Manimator: Transforming Research Papers into Visual Explanations
- URL: http://arxiv.org/abs/2507.14306v1
- Date: Fri, 18 Jul 2025 18:28:26 GMT
- Title: Manimator: Transforming Research Papers into Visual Explanations
- Authors: Samarth P, Vyoman Jain, Shiva Golugula, Motamarri Sai Sathvik,
- Abstract summary: We introduce manimator, an open-source system that transforms research papers and natural language prompts into explanatory animations.<n>Manimator employs a pipeline where an LLM interprets the input text or research paper PDF to generate a structured scene description.<n>Another LLM translates this description into executable Manim Python code.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding complex scientific and mathematical concepts, particularly those presented in dense research papers, poses a significant challenge for learners. Dynamic visualizations can greatly enhance comprehension, but creating them manually is time-consuming and requires specialized knowledge and skills. We introduce manimator, an open-source system that leverages Large Language Models to transform research papers and natural language prompts into explanatory animations using the Manim engine. Manimator employs a pipeline where an LLM interprets the input text or research paper PDF to generate a structured scene description outlining key concepts, mathematical formulas, and visual elements and another LLM translates this description into executable Manim Python code. We discuss its potential as an educational tool for rapidly creating engaging visual explanations for complex STEM topics, democratizing the creation of high-quality educational content.
Related papers
- Exploring Multimodal Prompt for Visualization Authoring with Large Language Models [12.43647167483504]
We study how large language models (LLMs) interpret ambiguous or incomplete text prompts in the context of visualization authoring.<n>We introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent.<n>We design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations.
arXiv Detail & Related papers (2025-04-18T14:00:55Z) - Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation [19.4261670152456]
We introduce the multimodal solution explanation task, designed to evaluate whether models can identify visual keypoints, such as auxiliary lines, points, angles, and generate explanations that incorporate these key elements essential for understanding.<n>Our empirical results show that, aside from recent large-scale open-source and closed-source models, most generalist open-source models, and even math-specialist models, struggle with the multimodal solution explanation task.<n>This highlights a significant gap in current LLMs' ability to reason and explain with visual grounding in educational contexts.
arXiv Detail & Related papers (2025-04-04T06:03:13Z) - Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era [50.19334853510935]
Recent strides in instruction-based editing have enabled intuitive interaction with visual content, using natural language as a bridge between user intent and complex editing operations.
We aim to democratize powerful visual editing across various industries, from entertainment to education.
arXiv Detail & Related papers (2024-11-15T05:18:15Z) - Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities.
Visual prompting has emerged for more fine-grained and free-form visual instructions.
This paper focuses on visual prompting, prompt generation, compositional reasoning, and prompt learning.
arXiv Detail & Related papers (2024-09-05T08:47:34Z) - LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models [60.67899965748755]
We present LLaVA-Read, a multimodal large language model that utilizes dual visual encoders along with a visual text encoder.
Our research suggests visual text understanding remains an open challenge and an efficient visual text encoder is crucial for future successful multimodal systems.
arXiv Detail & Related papers (2024-07-27T05:53:37Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - ClawMachine: Learning to Fetch Visual Tokens for Referential Comprehension [71.03445074045092]
We propose ClawMachine, offering a new methodology that explicitly notates each entity using token collectives groups of visual tokens.<n>Our method unifies the prompt and answer of visual referential tasks without using additional syntax.<n>ClawMachine achieves superior performance on scene-level and referential understanding tasks with higher efficiency.
arXiv Detail & Related papers (2024-06-17T08:39:16Z) - Large Language Models for Scientific Information Extraction: An
Empirical Study for Virology [0.0]
We champion the use of structured and semantic content representation of discourse-based scholarly communication.
Inspired by tools like Wikipedia infoboxes or structured Amazon product descriptions, we develop an automated approach to produce structured scholarly contribution summaries.
Our results show that finetuned FLAN-T5 with 1000x fewer parameters than the state-of-the-art GPT-davinci is competitive for the task.
arXiv Detail & Related papers (2024-01-18T15:04:55Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
This paper explores DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to understand dynamic scenes.<n>Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes.<n>We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and several in-the-wild scenarios.
arXiv Detail & Related papers (2024-01-16T14:33:09Z) - Comparing Code Explanations Created by Students and Large Language
Models [4.526618922750769]
Reasoning about code and explaining its purpose are fundamental skills for computer scientists.
The ability to describe at a high-level of abstraction how code will behave over all possible inputs correlates strongly with code writing skills.
Existing pedagogical approaches that scaffold the ability to explain code, such as producing code explanations on demand, do not currently scale well to large classrooms.
arXiv Detail & Related papers (2023-04-08T06:52:54Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
We test the capabilities of machine learning models in multimodal understanding of educational content.
Our dataset contains aligned slides and spoken language, for 180+ hours of video and 9000+ slides, with 10 lecturers from various subjects.
We introduce PolyViLT, a multimodal transformer trained with a multi-instance learning loss that is more effective than current approaches.
arXiv Detail & Related papers (2022-08-17T05:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.