Quantum-Safe Identity Verification using Relativistic Zero-Knowledge Proof Systems
- URL: http://arxiv.org/abs/2507.14324v1
- Date: Fri, 18 Jul 2025 18:59:19 GMT
- Title: Quantum-Safe Identity Verification using Relativistic Zero-Knowledge Proof Systems
- Authors: Yao Ma, Wen Yu Kon, Jefferson Chu, Kevin Han Yong Loh, Kaushik Chakraborty, Charles Lim,
- Abstract summary: Identity verification is essential in sectors like finance, healthcare, and online services to ensure security and prevent fraud.<n>Current password/PIN-based identity solutions are susceptible to phishing or skimming attacks.<n>We explore identity verification through graph coloring-based relativistic zero-knowledge proofs.
- Score: 3.8435472626703473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identity verification is the process of confirming an individual's claimed identity, which is essential in sectors like finance, healthcare, and online services to ensure security and prevent fraud. However, current password/PIN-based identity solutions are susceptible to phishing or skimming attacks, where malicious intermediaries attempt to steal credentials using fake identification portals. Alikhani et al. [Nature, 2021] began exploring identity verification through graph coloring-based relativistic zero-knowledge proofs (RZKPs), a key cryptographic primitive that enables a prover to demonstrate knowledge of secret credentials to a verifier without disclosing any information about the secret. Our work advances this field and addresses unresolved issues: From an engineering perspective, we relax further the relativistic constraints from 60m to 30m, and significantly enhance the stability and scalability of the experimental demonstration of the 2-prover graph coloring-based RZKP protocol for near-term use cases. At the same time, for long-term security against entangled malicious provers, we propose a modified protocol with comparable computation and communication costs, we establish an upper bound on the soundness parameter for this modified protocol. On the other hand, we extend the two-prover, two-verifier setup to a three-prover configuration, demonstrating the security of such relativistic protocols against entangled malicious provers.
Related papers
- Privacy-Preserving Biometric Verification with Handwritten Random Digit String [49.77172854374479]
Handwriting verification has stood as a steadfast identity authentication method for decades.<n>However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures.<n>We propose using the Random Digit String (RDS) for privacy-preserving handwriting verification.
arXiv Detail & Related papers (2025-03-17T03:47:25Z) - Towards Copyright Protection for Knowledge Bases of Retrieval-augmented Language Models via Reasoning [58.57194301645823]
Large language models (LLMs) are increasingly integrated into real-world personalized applications.<n>The valuable and often proprietary nature of the knowledge bases used in RAG introduces the risk of unauthorized usage by adversaries.<n>Existing methods that can be generalized as watermarking techniques to protect these knowledge bases typically involve poisoning or backdoor attacks.<n>We propose name for harmless' copyright protection of knowledge bases.
arXiv Detail & Related papers (2025-02-10T09:15:56Z) - Formal Verification of Permission Voucher [1.4732811715354452]
The Permission Voucher Protocol is a system designed for secure and authenticated access control in distributed environments.<n>The analysis employs the Tamarin Prover, a state-of-the-art tool for symbolic verification, to evaluate key security properties.<n>Results confirm the protocol's robustness against common attacks such as message tampering, impersonation, and replay.
arXiv Detail & Related papers (2024-12-18T14:11:50Z) - Towards Credential-based Device Registration in DApps for DePINs with ZKPs [46.08150780379237]
We propose a credential-based device registration (CDR) mechanism that verifies device credentials on the blockchain.
We present a general system model, and technically evaluate CDR using zkSNARKs with Groth16 and Marlin.
arXiv Detail & Related papers (2024-06-27T09:50:10Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Experimental Implementation of A Quantum Zero-Knowledge Proof for User
Authentication [0.39845810840390733]
A new interactive quantum zero-knowledge protocol for identity authentication is proposed and demonstrated.
The protocol design involves a verifier and a prover knowing a pre-shared secret, and the acceptance or rejection of the proof is determined by the quantum bit error rate.
arXiv Detail & Related papers (2024-01-17T19:00:00Z) - On Cryptographic Mechanisms for the Selective Disclosure of Verifiable Credentials [39.4080639822574]
Verifiable credentials are a digital analogue of physical credentials.
They can be presented to verifiers to reveal attributes or even predicates about the attributes included in the credential.
One way to preserve privacy during presentation consists in selectively disclosing the attributes in a credential.
arXiv Detail & Related papers (2024-01-16T08:22:28Z) - Disentangle Before Anonymize: A Two-stage Framework for Attribute-preserved and Occlusion-robust De-identification [55.741525129613535]
"Disentangle Before Anonymize" is a novel two-stage Framework(DBAF)<n>This framework includes a Contrastive Identity Disentanglement (CID) module and a Key-authorized Reversible Identity Anonymization (KRIA) module.<n>Extensive experiments demonstrate that our method outperforms state-of-the-art de-identification approaches.
arXiv Detail & Related papers (2023-11-15T08:59:02Z) - Incorporating Zero-Knowledge Succinct Non-interactive Argument of Knowledge for Blockchain-based Identity Management with off-chain computations [0.8621608193534839]
A novel blockchain-based fingerprint authentication system is proposed that integrates zk-SNARKs.
The proposed method has the potential to provide a secure and efficient solution for blockchain-based identity management.
arXiv Detail & Related papers (2023-10-30T11:24:05Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Security and Privacy Enhanced Gait Authentication with Random
Representation Learning and Digital Lockers [3.3549957463189095]
Gait data captured by inertial sensors have demonstrated promising results on user authentication.
Most existing approaches stored the enrolled gait pattern insecurely for matching with the pattern, thus, posed critical security and privacy issues.
We present a gait cryptosystem that generates from gait data the random key for user authentication, meanwhile, secures the gait pattern.
arXiv Detail & Related papers (2021-08-05T06:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.