Optimizing Legal Document Retrieval in Vietnamese with Semi-Hard Negative Mining
- URL: http://arxiv.org/abs/2507.14619v1
- Date: Sat, 19 Jul 2025 13:30:14 GMT
- Title: Optimizing Legal Document Retrieval in Vietnamese with Semi-Hard Negative Mining
- Authors: Van-Hoang Le, Duc-Vu Nguyen, Kiet Van Nguyen, Ngan Luu-Thuy Nguyen,
- Abstract summary: This paper presents a two-stage framework consisting of Retrieval and Re-ranking to enhance legal document retrieval efficiency and accuracy.<n>Key innovations include the introduction of the Exist@m metric to evaluate retrieval effectiveness and the use of semi-hard negatives to mitigate training bias.<n>The framework demonstrates that optimized data processing, tailored loss functions, and balanced negative sampling are pivotal for building robust retrieval-augmented systems in legal contexts.
- Score: 4.233176571117095
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) face significant challenges in specialized domains like law, where precision and domain-specific knowledge are critical. This paper presents a streamlined two-stage framework consisting of Retrieval and Re-ranking to enhance legal document retrieval efficiency and accuracy. Our approach employs a fine-tuned Bi-Encoder for rapid candidate retrieval, followed by a Cross-Encoder for precise re-ranking, both optimized through strategic negative example mining. Key innovations include the introduction of the Exist@m metric to evaluate retrieval effectiveness and the use of semi-hard negatives to mitigate training bias, which significantly improved re-ranking performance. Evaluated on the SoICT Hackathon 2024 for Legal Document Retrieval, our team, 4Huiter, achieved a top-three position. While top-performing teams employed ensemble models and iterative self-training on large bge-m3 architectures, our lightweight, single-pass approach offered a competitive alternative with far fewer parameters. The framework demonstrates that optimized data processing, tailored loss functions, and balanced negative sampling are pivotal for building robust retrieval-augmented systems in legal contexts.
Related papers
- Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - Learning Binarized Representations with Pseudo-positive Sample Enhancement for Efficient Graph Collaborative Filtering [35.82405808653398]
We study the problem of graph representation binarization for efficient collaborative filtering.<n>Our findings indicate that explicitly mitigating information loss at various stages of embedding binarization has a significant positive impact on performance.<n>Compared to its predecessor BiGeaR, BiGeaR++ introduces a fine-grained inference distillation mechanism and an effective embedding sample synthesis approach.
arXiv Detail & Related papers (2025-06-03T11:11:43Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - Breaking the Lens of the Telescope: Online Relevance Estimation over Large Retrieval Sets [14.494301139974455]
We propose a novel paradigm for re-ranking called online relevance estimation.<n>Online relevance estimation continuously updates relevance estimates for a query throughout the ranking process.<n>We validate our approach on TREC benchmarks under two scenarios: hybrid retrieval and adaptive retrieval.
arXiv Detail & Related papers (2025-04-12T22:05:50Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - On the Role of Feedback in Test-Time Scaling of Agentic AI Workflows [71.92083784393418]
Agentic AI (systems that autonomously plan and act) are becoming widespread, yet their task success rate on complex tasks remains low.<n>Inference-time alignment relies on three components: sampling, evaluation, and feedback.<n>We introduce Iterative Agent Decoding (IAD), a procedure that repeatedly inserts feedback extracted from different forms of critiques.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.<n>This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.<n>We analyze experimental results obtained from testing DeepSeek-R1 on our benchmark and reveal the critical ethical concerns raised by this highly acclaimed model.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - Enhancing Retrieval Performance: An Ensemble Approach For Hard Negative Mining [0.0]
This study focuses on explaining the crucial role of hard negatives in the training process of cross-encoder models.
We have developed a robust hard negative mining technique for efficient training of cross-encoder re-rank models on an enterprise dataset.
arXiv Detail & Related papers (2024-10-18T05:23:39Z) - A Reproducibility Study of PLAID [25.86500025007641]
We compare PLAID with an important baseline missing from the paper: re-ranking a lexical system.
We find that applying ColBERTv2 as a re-ranker atop an initial pool of BM25 results provides better efficiency-effectiveness trade-offs in low-latency settings.
We find that recently proposed modifications to re-ranking that pull in the neighbors of top-scoring documents overcome this limitation.
arXiv Detail & Related papers (2024-04-23T12:46:53Z) - Building an Efficient and Effective Retrieval-based Dialogue System via
Mutual Learning [27.04857039060308]
We propose to combine the best of both worlds to build a retrieval system.
We employ a fast bi-encoder to replace the traditional feature-based pre-retrieval model.
We train the pre-retrieval model and the re-ranking model at the same time via mutual learning.
arXiv Detail & Related papers (2021-10-01T01:32:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.