Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches
- URL: http://arxiv.org/abs/2507.14633v1
- Date: Sat, 19 Jul 2025 14:07:05 GMT
- Title: Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches
- Authors: Xiaozheng Gao, Yichen Wang, Bosen Liu, Xiao Zhou, Ruichen Zhang, Jiacheng Wang, Dusit Niyato, Dong In Kim, Abbas Jamalipour, Chau Yuen, Jianping An, Kai Yang,
- Abstract summary: This survey focuses on enabling agentic artificial intelligence (AI) in satellite-augmented low-altitude economy and terrestrial networks (SLAETNs)<n>We introduce the architecture and characteristics of SLAETNs, and analyze the challenges that arise in integrating satellite, aerial, and terrestrial components.<n>We examine how these models empower agentic functions across three domains: communication enhancement, security and privacy protection, and intelligent satellite tasks.
- Score: 76.12691010182802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of satellite-augmented low-altitude economy and terrestrial networks (SLAETNs) demands intelligent and autonomous systems that can operate reliably across heterogeneous, dynamic, and mission-critical environments. To address these challenges, this survey focuses on enabling agentic artificial intelligence (AI), that is, artificial agents capable of perceiving, reasoning, and acting, through generative AI (GAI) and large language models (LLMs). We begin by introducing the architecture and characteristics of SLAETNs, and analyzing the challenges that arise in integrating satellite, aerial, and terrestrial components. Then, we present a model-driven foundation by systematically reviewing five major categories of generative models: variational autoencoders (VAEs), generative adversarial networks (GANs), generative diffusion models (GDMs), transformer-based models (TBMs), and LLMs. Moreover, we provide a comparative analysis to highlight their generative mechanisms, capabilities, and deployment trade-offs within SLAETNs. Building on this foundation, we examine how these models empower agentic functions across three domains: communication enhancement, security and privacy protection, and intelligent satellite tasks. Finally, we outline key future directions for building scalable, adaptive, and trustworthy generative agents in SLAETNs. This survey aims to provide a unified understanding and actionable reference for advancing agentic AI in next-generation integrated networks.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - UAVs Meet Agentic AI: A Multidomain Survey of Autonomous Aerial Intelligence and Agentic UAVs [0.36868085124383626]
Agentic UAVs surpass traditional UAVs by exhibiting goal-driven behavior, contextual reasoning, and interactive autonomy.<n>This study explores seven high-impact application domains precision agriculture, construction & mining, disaster response, environmental monitoring, infrastructure inspection, logistics, security, and wildlife conservation.
arXiv Detail & Related papers (2025-06-08T01:39:51Z) - World Models for Cognitive Agents: Transforming Edge Intelligence in Future Networks [55.90051810762702]
We present a comprehensive overview of world models, highlighting their architecture, training paradigms, and applications across prediction, generation, planning, and causal reasoning.<n>We propose Wireless Dreamer, a novel world model-based reinforcement learning framework tailored for wireless edge intelligence optimization.
arXiv Detail & Related papers (2025-05-31T06:43:00Z) - Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents.<n>We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet.
arXiv Detail & Related papers (2025-03-20T00:48:44Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.