MiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization
- URL: http://arxiv.org/abs/2507.14683v1
- Date: Sat, 19 Jul 2025 16:21:23 GMT
- Title: MiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization
- Authors: Xingxuan Li, Yao Xiao, Dianwen Ng, Hai Ye, Yue Deng, Xiang Lin, Bin Wang, Zhanfeng Mo, Chong Zhang, Yueyi Zhang, Zonglin Yang, Ruilin Li, Lei Lei, Shihao Xu, Han Zhao, Weiling Chen, Feng Ji, Lidong Bing,
- Abstract summary: MiroMind-M1 is a set of fully open-source RLMs built on the Qwen-2.5-based benchmarks.<n>Our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems.
- Score: 74.04867639197445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have recently evolved from fluent text generation to advanced reasoning across diverse domains, giving rise to reasoning language models. Among these domains, mathematical reasoning serves as a representative benchmark as it requires precise multi-step logic and abstract reasoning, which can be generalized to other tasks. While closed-source RLMs such as GPT-o3 demonstrate impressive reasoning capabilities, their proprietary nature limits transparency and reproducibility. Although many open-source projects aim to close this gap, most of them lack sufficient openness by omitting critical resources such as datasets and detailed training configurations, which hinders reproducibility. To contribute toward greater transparency in RLM development, we introduce the MiroMind-M1 series, a set of fully open-source RLMs built on the Qwen-2.5 backbone that match or exceed the performance of existing open-source RLMs. Specifically, our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems. To enhance the robustness and efficiency of the RLVR process, we introduce Context-Aware Multi-Stage Policy Optimization, an algorithm that integrates length-progressive training with an adaptive repetition penalty to encourage context-aware RL training. Our model achieves state-of-the-art or competitive performance and superior token efficiency among Qwen-2.5-based open-source 7B and 32B models on the AIME24, AIME25, and MATH benchmarks. To facilitate reproducibility, we release the complete stack: models (MiroMind-M1-SFT-7B, MiroMind-M1-RL-7B, MiroMind-M1-RL-32B); datasets (MiroMind-M1-SFT-719K, MiroMind-M1-RL-62K); and all training and evaluation configurations. We hope these resources will support further research and foster community advancement.
Related papers
- RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [86.30192066451256]
We propose RL-PLUS, a novel hybrid-policy optimization approach for Large Language Models (LLMs)<n> RL-PLUS synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models.<n>We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach.
arXiv Detail & Related papers (2025-07-31T23:55:29Z) - MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning [4.963955559863751]
MMAT-1M is the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage.<n>Our dataset is constructed through a novel four-stage data engine.<n>By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains.
arXiv Detail & Related papers (2025-07-29T15:39:14Z) - CIMR: Contextualized Iterative Multimodal Reasoning for Robust Instruction Following in LVLMs [2.238122883754112]
CIMR is a novel framework that introduces a context-aware iterative reasoning and self-correction module.<n> CIMR achieves 91.5% accuracy, outperforming state-of-the-art models such as GPT-4V, LLaVA-1.5, MiniGPT-4, and InstructBLIP.
arXiv Detail & Related papers (2025-07-22T18:39:18Z) - Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning [28.92744927199283]
ReVisual-R1 achieves a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
arXiv Detail & Related papers (2025-06-04T17:51:08Z) - MM-Eureka: Exploring the Frontiers of Multimodal Reasoning with Rule-based Reinforcement Learning [55.82649731348012]
We introduce the MMK12 dataset and MM-EUREKA with 7B and 32B parameters.<n>The former is a high-quality multimodal mathematics reasoning dataset featuring diverse knowledge domains with human-verified answers and solution processes.<n>The latter is a multimodal model employing rule-based reinforcement learning utilizing online filtering and two-stage training strategy to enhance training stability.
arXiv Detail & Related papers (2025-03-10T14:23:12Z) - Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models [24.45348222168512]
We propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability.<n>Our model achieves an average improvement of $sim$6% across various multimodal math reasoning benchmarks.<n>Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1.
arXiv Detail & Related papers (2025-03-09T20:06:45Z) - START: Self-taught Reasoner with Tools [51.38785489790888]
We introduce START (Self-Taught Reasoner with Tools), a tool-integrated long Chain-of-thought (CoT) reasoning LLM.<n> START is capable of performing complex computations, self-checking, exploring diverse methods, and self-ging.<n>It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B.
arXiv Detail & Related papers (2025-03-06T17:11:51Z) - URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics [23.80647785460245]
Process Reward Models (PRMs) have shown promise in enhancing the mathematical reasoning capabilities of Large Language Models.<n>We take the first step toward unlocking the potential of PRMs in multimodal mathematical reasoning.<n>We introduce URSA, a three-stage Unfolding multimodal Process-Supervision Aided training framework.
arXiv Detail & Related papers (2025-01-08T18:49:41Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization (PO) process to enhance the multimodal reasoning capabilities of MLLMs.<n>Specifically, we design an automated preference data construction pipeline to create MMPR, a high-quality, large-scale multimodal reasoning preference dataset.<n>We explore integrating PO with MLLMs, developing a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
arXiv Detail & Related papers (2024-11-15T18:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.