Automated Safety Evaluations Across 20 Large Language Models: The Aymara LLM Risk and Responsibility Matrix
- URL: http://arxiv.org/abs/2507.14719v1
- Date: Sat, 19 Jul 2025 18:49:16 GMT
- Title: Automated Safety Evaluations Across 20 Large Language Models: The Aymara LLM Risk and Responsibility Matrix
- Authors: Juan Manuel Contreras,
- Abstract summary: Aymara AI is a programmatic platform for generating and administering customized, policy-grounded safety evaluations.<n>It transforms natural-language safety policies into adversarial prompts and scores model responses using an AI-based rater validated against human judgments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) become increasingly integrated into real-world applications, scalable and rigorous safety evaluation is essential. This paper introduces Aymara AI, a programmatic platform for generating and administering customized, policy-grounded safety evaluations. Aymara AI transforms natural-language safety policies into adversarial prompts and scores model responses using an AI-based rater validated against human judgments. We demonstrate its capabilities through the Aymara LLM Risk and Responsibility Matrix, which evaluates 20 commercially available LLMs across 10 real-world safety domains. Results reveal wide performance disparities, with mean safety scores ranging from 86.2% to 52.4%. While models performed well in well-established safety domains such as Misinformation (mean = 95.7%), they consistently failed in more complex or underspecified domains, notably Privacy & Impersonation (mean = 24.3%). Analyses of Variance confirmed that safety scores differed significantly across both models and domains (p < .05). These findings underscore the inconsistent and context-dependent nature of LLM safety and highlight the need for scalable, customizable tools like Aymara AI to support responsible AI development and oversight.
Related papers
- Beyond Reactive Safety: Risk-Aware LLM Alignment via Long-Horizon Simulation [69.63626052852153]
We propose a proof-of-concept framework that projects how model-generated advice could propagate through societal systems.<n>We also introduce a dataset of 100 indirect harm scenarios, testing models' ability to foresee adverse, non-obvious outcomes from seemingly harmless user prompts.
arXiv Detail & Related papers (2025-06-26T02:28:58Z) - Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach [17.5700128005813]
Large language models (LLMs) typically generate identical or similar responses for all users given the same prompt.<n> PENGUIN is a benchmark comprising 14,000 scenarios across seven sensitive domains with both context-rich and context-free variants.<n> RAISE is a training-free, two-stage agent framework that strategically acquires user-specific background.
arXiv Detail & Related papers (2025-05-24T21:37:10Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning [10.844235123282056]
Vision-language-action models (VLAs) show potential as generalist robot policies.<n>These models pose extreme safety challenges during real-world deployment, including the risk of harm to the environment, the robot itself, and humans.<n>We address this by exploring an integrated safety approach (ISA), systematically modeling safety requirements, then actively eliciting diverse unsafe behaviors.
arXiv Detail & Related papers (2025-03-05T13:16:55Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a benchmark designed to evaluate the safety of large language models (LLMs)<n>Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.<n>Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - SafetyAnalyst: Interpretable, Transparent, and Steerable Safety Moderation for AI Behavior [56.10557932893919]
We present SafetyAnalyst, a novel AI safety moderation framework.<n>Given an AI behavior, SafetyAnalyst uses chain-of-thought reasoning to analyze its potential consequences.<n>It aggregates effects into a harmfulness score using 28 fully interpretable weight parameters.
arXiv Detail & Related papers (2024-10-22T03:38:37Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.