InterAct-Video: Reasoning-Rich Video QA for Urban Traffic
- URL: http://arxiv.org/abs/2507.14743v1
- Date: Sat, 19 Jul 2025 20:30:43 GMT
- Title: InterAct-Video: Reasoning-Rich Video QA for Urban Traffic
- Authors: Joseph Raj Vishal, Rutuja Patil, Manas Srinivas Gowda, Katha Naik, Yezhou Yang, Bharatesh Chakravarthi,
- Abstract summary: Deep learning has advanced video-based traffic monitoring through question answering (VideoQA) models.<n>Existing VideoQA models struggle with the complexity of real-world traffic scenes.<n>InterAct VideoQA is a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks.
- Score: 20.537672896807063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic monitoring is crucial for urban mobility, road safety, and intelligent transportation systems (ITS). Deep learning has advanced video-based traffic monitoring through video question answering (VideoQA) models, enabling structured insight extraction from traffic videos. However, existing VideoQA models struggle with the complexity of real-world traffic scenes, where multiple concurrent events unfold across spatiotemporal dimensions. To address these challenges, this paper introduces \textbf{InterAct VideoQA}, a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks. The InterAct VideoQA dataset comprises 8 hours of real-world traffic footage collected from diverse intersections, segmented into 10-second video clips, with over 25,000 question-answer (QA) pairs covering spatiotemporal dynamics, vehicle interactions, incident detection, and other critical traffic attributes. State-of-the-art VideoQA models are evaluated on InterAct VideoQA, exposing challenges in reasoning over fine-grained spatiotemporal dependencies within complex traffic scenarios. Additionally, fine-tuning these models on InterAct VideoQA yields notable performance improvements, demonstrating the necessity of domain-specific datasets for VideoQA. InterAct VideoQA is publicly available as a benchmark dataset to facilitate future research in real-world deployable VideoQA models for intelligent transportation systems. GitHub Repo: https://github.com/joe-rabbit/InterAct_VideoQA
Related papers
- TUMTraffic-VideoQA: A Benchmark for Unified Spatio-Temporal Video Understanding in Traffic Scenes [26.948071735495237]
We present TUMTraffic-VideoQA, a dataset and benchmark designed for understanding complex traffic scenarios.<n>The dataset comprises 1,000 videos, featuring 85,000 multiple-choice pairs, 2,300 object captioning, and 5,700 object annotations, encompassing diverse real-world conditions such as adverse weather and traffic anomalies.
arXiv Detail & Related papers (2025-02-04T16:14:40Z) - TimeLogic: A Temporal Logic Benchmark for Video QA [64.32208175236323]
We introduce the TimeLogic QA (TLQA) framework to automatically generate temporal logical questions.<n>We leverage 4 datasets, STAR, Breakfast, AGQA, and CrossTask, and generate 2k and 10k QA pairs for each category.<n>We assess the VideoQA model's temporal reasoning performance on 16 categories of temporal logic with varying temporal complexity.
arXiv Detail & Related papers (2025-01-13T11:12:59Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.<n>Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.<n>We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - Eyes on the Road: State-of-the-Art Video Question Answering Models Assessment for Traffic Monitoring Tasks [0.0]
This study evaluates state-of-the-art VideoQA models using non-benchmark synthetic and real-world traffic sequences.<n>VideoLLaMA-2 advances with 57% accuracy, particularly in compositional reasoning and consistent answers.<n>These findings underscore VideoQA's potential in traffic monitoring but also emphasize the need for improvements in multi-object tracking, temporal reasoning, and compositional capabilities.
arXiv Detail & Related papers (2024-12-02T05:15:32Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.<n>We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.<n>Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - TrafficVLM: A Controllable Visual Language Model for Traffic Video Captioning [0.0]
We present TrafficVLM, a novel multi-modal dense video captioning model for vehicle ego camera view.
Our solution achieved outstanding results in Track 2 of the AI City Challenge 2024, ranking us third in the challenge standings.
arXiv Detail & Related papers (2024-04-14T14:51:44Z) - Traffic-Domain Video Question Answering with Automatic Captioning [69.98381847388553]
Video Question Answering (VidQA) exhibits remarkable potential in facilitating advanced machine reasoning capabilities.
We present a novel approach termed Traffic-domain Video Question Answering with Automatic Captioning (TRIVIA), which serves as a weak-supervision technique for infusing traffic-domain knowledge into large video-language models.
arXiv Detail & Related papers (2023-07-18T20:56:41Z) - TrafficQA: A Question Answering Benchmark and an Efficient Network for
Video Reasoning over Traffic Events [13.46045177335564]
We create a novel dataset, TrafficQA (Traffic Question Answering), based on the collected 10,080 in-the-wild videos and annotated 62,535 QA pairs.
We propose 6 challenging reasoning tasks corresponding to various traffic scenarios, so as to evaluate the reasoning capability over different kinds of complex yet practical traffic events.
We also propose Eclipse, a novel Efficient glimpse network via dynamic inference, in order to achieve computation-efficient and reliable video reasoning.
arXiv Detail & Related papers (2021-03-29T12:12:50Z) - Hierarchical Conditional Relation Networks for Multimodal Video Question
Answering [67.85579756590478]
Video QA adds at least two more layers of complexity - selecting relevant content for each channel in the context of a linguistic query.
Conditional Relation Network (CRN) takes as input a set of tensorial objects translating into a new set of objects that encode relations of the inputs.
CRN is then applied for Video QA in two forms, short-form where answers are reasoned solely from the visual content, and long-form where associated information, such as subtitles, is presented.
arXiv Detail & Related papers (2020-10-18T02:31:06Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.