Analyzing Internal Activity and Robustness of SNNs Across Neuron Parameter Space
- URL: http://arxiv.org/abs/2507.14757v1
- Date: Sat, 19 Jul 2025 21:13:53 GMT
- Title: Analyzing Internal Activity and Robustness of SNNs Across Neuron Parameter Space
- Authors: Szymon Mazurek, Jakub Caputa, Maciej Wielgosz,
- Abstract summary: Spiking Neural Networks (SNNs) offer energy-efficient alternatives to traditional artificial neural networks.<n>We characterize an operational space within which the network exhibits meaningful activity and functional behavior.<n>Our results offer practical guidelines for deploying robust and efficient SNNs.
- Score: 0.08192907805418582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) offer energy-efficient and biologically plausible alternatives to traditional artificial neural networks, but their performance depends critically on the tuning of neuron model parameters. In this work, we identify and characterize an operational space - a constrained region in the neuron hyperparameter domain (specifically membrane time constant tau and voltage threshold vth) - within which the network exhibits meaningful activity and functional behavior. Operating inside this manifold yields optimal trade-offs between classification accuracy and spiking activity, while stepping outside leads to degeneration: either excessive energy use or complete network silence. Through systematic exploration across datasets and architectures, we visualize and quantify this manifold and identify efficient operating points. We further assess robustness to adversarial noise, showing that SNNs exhibit increased spike correlation and internal synchrony when operating outside their optimal region. These findings highlight the importance of principled hyperparameter tuning to ensure both task performance and energy efficiency. Our results offer practical guidelines for deploying robust and efficient SNNs, particularly in neuromorphic computing scenarios.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Adaptively Pruned Spiking Neural Networks for Energy-Efficient Intracortical Neural Decoding [0.06181089784338582]
Spiking Neural Networks (SNNs) on neuromorphic hardware have demonstrated remarkable efficiency in neural decoding.<n>We introduce a novel adaptive pruning algorithm specifically designed for SNNs with high activation sparsity, targeting intracortical neural decoding.
arXiv Detail & Related papers (2025-04-15T19:16:34Z) - Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs)<n>We propose SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR.
arXiv Detail & Related papers (2025-03-06T09:06:06Z) - DRiVE: Dynamic Recognition in VEhicles using snnTorch [0.0]
Spiking Neural Networks (SNNs) mimic biological brain activity, processing data efficiently through an event-driven design.<n>This study combines SNNs with PyTorch's adaptable framework, snnTorch, to test their potential for image-based tasks.<n>We introduce DRiVE, a vehicle detection model that uses spiking neuron dynamics to classify images, achieving 94.8% accuracy and a near-perfect 0.99 AUC score.
arXiv Detail & Related papers (2025-02-04T11:01:13Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential.<n>We propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons.<n>Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density.
arXiv Detail & Related papers (2024-09-08T05:14:22Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.<n>We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.<n>Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.