QUTCC: Quantile Uncertainty Training and Conformal Calibration for Imaging Inverse Problems
- URL: http://arxiv.org/abs/2507.14760v1
- Date: Sat, 19 Jul 2025 21:44:14 GMT
- Title: QUTCC: Quantile Uncertainty Training and Conformal Calibration for Imaging Inverse Problems
- Authors: Cassandra Tong Ye, Shamus Li, Tyler King, Kristina Monakhova,
- Abstract summary: Deep learning models often hallucinate, producing realistic artifacts that are not truly present in the sample.<n>This can have dire consequences for scientific and medical inverse problems, such as MRI and microscopy denoising.<n>We propose QUTCC, a quantile uncertainty training and calibration technique that enables nonlinear, non-uniform scaling of quantile predictions.
- Score: 9.910688414749654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models often hallucinate, producing realistic artifacts that are not truly present in the sample. This can have dire consequences for scientific and medical inverse problems, such as MRI and microscopy denoising, where accuracy is more important than perceptual quality. Uncertainty quantification techniques, such as conformal prediction, can pinpoint outliers and provide guarantees for image regression tasks, improving reliability. However, existing methods utilize a linear constant scaling factor to calibrate uncertainty bounds, resulting in larger, less informative bounds. We propose QUTCC, a quantile uncertainty training and calibration technique that enables nonlinear, non-uniform scaling of quantile predictions to enable tighter uncertainty estimates. Using a U-Net architecture with a quantile embedding, QUTCC enables the prediction of the full conditional distribution of quantiles for the imaging task. During calibration, QUTCC generates uncertainty bounds by iteratively querying the network for upper and lower quantiles, progressively refining the bounds to obtain a tighter interval that captures the desired coverage. We evaluate our method on several denoising tasks as well as compressive MRI reconstruction. Our method successfully pinpoints hallucinations in image estimates and consistently achieves tighter uncertainty intervals than prior methods while maintaining the same statistical coverage.
Related papers
- CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment [7.702016079410588]
We introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that aligns predicted uncertainty with observed error during training.<n>We show that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-28T19:23:47Z) - Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
We propose a risk-controlling quantile neural operator, a distribution-free, finite-sample functional calibration conformal prediction method.
We provide a theoretical calibration guarantee on the coverage rate, defined as the expected percentage of points on the function domain.
Empirical results on a 2D Darcy flow and a 3D car surface pressure prediction task validate our theoretical results.
arXiv Detail & Related papers (2024-02-02T23:43:28Z) - Instant Uncertainty Calibration of NeRFs Using a Meta-calibrator [60.47106421809998]
We introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass.
We show that the meta-calibrator can generalize on unseen scenes and achieves well-calibrated and state-of-the-art uncertainty for NeRFs.
arXiv Detail & Related papers (2023-12-04T21:29:31Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Likelihood Annealing: Fast Calibrated Uncertainty for Regression [39.382916579076344]
This work presents a fast calibrated uncertainty estimation method for regression tasks called Likelihood Annealing.
Unlike previous methods for calibrated uncertainty in regression that focus only on low-dimensional regression problems, our method works well on a broad spectrum of regression problems, including high-dimensional regression.
arXiv Detail & Related papers (2023-02-21T21:24:35Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation [4.104181348044472]
We propose a novel CNN architecture to decouple sources of uncertainty related to the task and different k-space artefacts.
We show that our uncertainty predictions provide a better estimate of MRI quality from the point of view of the task.
arXiv Detail & Related papers (2021-09-06T12:54:44Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Calibrated Reliable Regression using Maximum Mean Discrepancy [45.45024203912822]
Modern deep neural networks still produce unreliable predictive uncertainty.
In this paper, we are concerned with getting well-calibrated predictions in regression tasks.
Experiments on non-trivial real datasets show that our method can produce well-calibrated and sharp prediction intervals.
arXiv Detail & Related papers (2020-06-18T03:38:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.