Exploring Scalable Unified Modeling for General Low-Level Vision
- URL: http://arxiv.org/abs/2507.14801v1
- Date: Sun, 20 Jul 2025 03:22:52 GMT
- Title: Exploring Scalable Unified Modeling for General Low-Level Vision
- Authors: Xiangyu Chen, Kaiwen Zhu, Yuandong Pu, Shuo Cao, Xiaohui Li, Wenlong Zhang, Yihao Liu, Yu Qiao, Jiantao Zhou, Chao Dong,
- Abstract summary: Low-level vision involves a wide spectrum of tasks, including image restoration, enhancement, stylization, and feature extraction.<n>To address the challenge of unified modeling across such diverse tasks, we propose a Visual task Prompt-based Image Processing framework.<n>We develop a unified low-level vision model, GenLV, and evaluate its performance across multiple representative tasks.
- Score: 39.89755374452788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-level vision involves a wide spectrum of tasks, including image restoration, enhancement, stylization, and feature extraction, which differ significantly in both task formulation and output domains. To address the challenge of unified modeling across such diverse tasks, we propose a Visual task Prompt-based Image Processing (VPIP) framework that leverages input-target image pairs as visual prompts to guide the model in performing a variety of low-level vision tasks. The framework comprises an end-to-end image processing backbone, a prompt encoder, and a prompt interaction module, enabling flexible integration with various architectures and effective utilization of task-specific visual representations. Based on this design, we develop a unified low-level vision model, GenLV, and evaluate its performance across multiple representative tasks. To explore the scalability of this approach, we extend the framework along two dimensions: model capacity and task diversity. We construct a large-scale benchmark consisting of over 100 low-level vision tasks and train multiple versions of the model with varying scales. Experimental results show that the proposed method achieves considerable performance across a wide range of tasks. Notably, increasing the number of training tasks enhances generalization, particularly for tasks with limited data, indicating the model's ability to learn transferable representations through joint training. Further evaluations in zero-shot generalization, few-shot transfer, and task-specific fine-tuning scenarios demonstrate the model's strong adaptability, confirming the effectiveness, scalability, and potential of the proposed framework as a unified foundation for general low-level vision modeling.
Related papers
- Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains [31.828341309787042]
Vision-language models (VLMs) achieve remarkable success in single-image tasks.<n>Real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline.<n>We propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs'perception, comprehension, and reasoning abilities in multi-image scenarios.
arXiv Detail & Related papers (2025-04-28T19:02:18Z) - VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning [68.98988753763666]
We propose VisualCloze, a universal image generation framework.<n>VisualCloze supports a wide range of in-domain tasks, generalization to unseen ones, unseen unification of multiple tasks, and reverse generation.<n>We introduce Graph200K, a graph-structured dataset that establishes various interrelated tasks, enhancing task density and transferable knowledge.
arXiv Detail & Related papers (2025-04-10T17:59:42Z) - UniVG: A Generalist Diffusion Model for Unified Image Generation and Editing [59.590505989071175]
Text-to-Image (T2I) diffusion models have shown impressive results in generating visually compelling images following user prompts.<n>We introduce UniVG, a generalist diffusion model capable of supporting a diverse range of image generation tasks with a single set of weights.
arXiv Detail & Related papers (2025-03-16T21:11:25Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - Unifying Image Processing as Visual Prompting Question Answering [62.84955983910612]
Image processing is a fundamental task in computer vision, which aims at enhancing image quality and extracting essential features for subsequent vision applications.
Traditionally, task-specific models are developed for individual tasks and designing such models requires distinct expertise.
We propose a universal model for general image processing that covers image restoration, image enhancement, image feature extraction tasks.
arXiv Detail & Related papers (2023-10-16T15:32:57Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Generative Modeling for Multi-task Visual Learning [40.96212750592383]
We consider a novel problem of learning a shared generative model that is useful across various visual perception tasks.
We propose a general multi-task oriented generative modeling framework, by coupling a discriminative multi-task network with a generative network.
Our framework consistently outperforms state-of-the-art multi-task approaches.
arXiv Detail & Related papers (2021-06-25T03:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.