U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
- URL: http://arxiv.org/abs/2507.14902v1
- Date: Sun, 20 Jul 2025 10:27:34 GMT
- Title: U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
- Authors: Xiaojie Li, Chu Li, Shi-Zhe Chen, Xi Chen,
- Abstract summary: Universal multimodal retrieval (UMR) aims to address complex retrieval tasks where both queries and candidates span diverse modalities.<n>We present a study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs.<n>We introduce a unified framework termed U-MARVEL, which outperforms state-of-the-art competitors on the M-B benchmark.
- Score: 24.551034147718312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (\textbf{U}niversal \textbf{M}ultimod\textbf{A}l \textbf{R}etrie\textbf{V}al via \textbf{E}mbedding \textbf{L}earning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL
Related papers
- Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
We propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately.<n>We show that Perception-R1 achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
arXiv Detail & Related papers (2025-06-08T16:48:42Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval [30.98084422803278]
We introduce UNITE, a universal framework that tackles challenges through data curation and modality-aware training configurations.<n>Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance.<n>Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins.
arXiv Detail & Related papers (2025-05-26T08:09:44Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.<n>We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Weakly Supervised Temporal Action Localization via Dual-Prior Collaborative Learning Guided by Multimodal Large Language Models [33.37379526356273]
We introduce a novel learning paradigm termed MLLM4WTAL.<n>It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.<n>It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
arXiv Detail & Related papers (2024-11-13T09:37:24Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)<n>We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.<n>Our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - Probing Ranking LLMs: A Mechanistic Analysis for Information Retrieval [20.353393773305672]
We employ a probing-based analysis to examine neuron activations in ranking LLMs.<n>Our study spans a broad range of feature categories, including lexical signals, document structure, query-document interactions, and complex semantic representations.<n>Our findings offer crucial insights for developing more transparent and reliable retrieval systems.
arXiv Detail & Related papers (2024-10-24T08:20:10Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
This paper proposes a new visual grounding task called multi-context visual grounding.
It aims to localize instances of interest across multiple images based on open-ended text prompts.
We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities.
arXiv Detail & Related papers (2024-10-16T07:52:57Z) - Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning [77.72128397088409]
We show that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question.<n>We also propose a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction.
arXiv Detail & Related papers (2024-04-19T15:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.