Hierarchical Cross-modal Prompt Learning for Vision-Language Models
- URL: http://arxiv.org/abs/2507.14976v1
- Date: Sun, 20 Jul 2025 14:18:04 GMT
- Title: Hierarchical Cross-modal Prompt Learning for Vision-Language Models
- Authors: Hao Zheng, Shunzhi Yang, Zhuoxin He, Jinfeng Yang, Zhenhua Huang,
- Abstract summary: HiCroPL is a Hierarchical Cross-modal Prompt Learning framework.<n>It routes knowledge flows by leveraging the complementary strengths of text and vision.<n>It achieves state-of-the-art results on 11 benchmarks with significant improvements.
- Score: 9.128564580725627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.
Related papers
- HiLa: Hierarchical Vision-Language Collaboration for Cancer Survival Prediction [55.00788339683146]
We propose a novel Hierarchical vision-Language collaboration framework for improved survival prediction.<n> Specifically, HiLa employs pretrained feature extractors to generate hierarchical visual features from WSIs at both patch and region levels.<n>This ap-proach enables the comprehensive learning of discriminative visual features cor-responding to different survival-related attributes from prompts.
arXiv Detail & Related papers (2025-07-07T02:06:25Z) - Text Speaks Louder than Vision: ASCII Art Reveals Textual Biases in Vision-Language Models [93.46875303598577]
Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals remains underexplored.<n>This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts.
arXiv Detail & Related papers (2025-04-02T10:47:07Z) - InPK: Infusing Prior Knowledge into Prompt for Vision-Language Models [24.170351966913557]
We propose the InPK model, which infuses class-specific prior knowledge into the learnable tokens.<n>We also introduce a learnable text-to-vision projection layer to accommodate the text adjustments.<n>In experiments, InPK significantly outperforms state-of-the-art methods in multiple zero/few-shot image classification tasks.
arXiv Detail & Related papers (2025-02-27T05:33:18Z) - Emergent Visual-Semantic Hierarchies in Image-Text Representations [13.300199242824934]
We study the knowledge of existing foundation models, finding that they exhibit emergent understanding of visual-semantic hierarchies.
We propose the Radial Embedding (RE) framework for probing and optimizing hierarchical understanding.
arXiv Detail & Related papers (2024-07-11T14:09:42Z) - Attend and Enrich: Enhanced Visual Prompt for Zero-Shot Learning [114.59476118365266]
We propose AENet, which endows semantic information into the visual prompt to distill semantic-enhanced prompt for visual representation enrichment.<n> AENet comprises two key steps: 1) exploring the concept-harmonized tokens for the visual and attribute modalities, grounded on the modal-sharing token that represents consistent visual-semantic concepts; and 2) yielding semantic-enhanced prompt via the visual residual refinement unit with attribute consistency supervision.
arXiv Detail & Related papers (2024-06-05T07:59:48Z) - Text-driven Prompt Generation for Vision-Language Models in Federated
Learning [24.005620820818756]
Our work proposes Federated Text-driven Prompt Generation (FedTPG)
FedTPG learns a unified prompt generation network across multiple remote clients in a scalable manner.
Our comprehensive empirical evaluations on nine diverse image classification datasets show that our method is superior to existing federated prompt learning methods.
arXiv Detail & Related papers (2023-10-09T19:57:24Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
We propose a new method, Decoupled Prompt Learning, which reformulates the attention in prompt learning to alleviate this problem.
Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning.
arXiv Detail & Related papers (2023-08-19T15:48:38Z) - HiCLIP: Contrastive Language-Image Pretraining with Hierarchy-aware
Attention [38.9792837990585]
We equip both the visual and language branches in CLIP with hierarchy-aware attentions, namely Hierarchy-aware CLIP (HiCLIP)
HiCLIP progressively discovers semantic hierarchies layer-by-layer from both images and texts in an unsupervised manner.
As a result, such hierarchical aggregation significantly improves the cross-modal alignment.
arXiv Detail & Related papers (2023-03-06T09:44:01Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - Single-Stream Multi-Level Alignment for Vision-Language Pretraining [103.09776737512078]
We propose a single stream model that aligns the modalities at multiple levels.
We achieve this using two novel tasks: symmetric cross-modality reconstruction and a pseudo-labeled key word prediction.
We demonstrate top performance on a set of Vision-Language downstream tasks such as zero-shot/fine-tuned image/text retrieval, referring expression, and VQA.
arXiv Detail & Related papers (2022-03-27T21:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.