Improving Joint Embedding Predictive Architecture with Diffusion Noise
- URL: http://arxiv.org/abs/2507.15216v1
- Date: Mon, 21 Jul 2025 03:36:58 GMT
- Title: Improving Joint Embedding Predictive Architecture with Diffusion Noise
- Authors: Yuping Qiu, Rui Zhu, Ying-cong Chen,
- Abstract summary: Self-supervised learning has become an incredibly successful method for feature learning, widely applied to many downstream tasks.<n>It has proven especially effective for discriminative tasks, surpassing the trending generative models.<n>In this paper, we propose N-JEPA (Noise-based JEPA) to incorporate diffusion noise into MIM by the position embedding of masked tokens.
- Score: 17.836067519894154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning has become an incredibly successful method for feature learning, widely applied to many downstream tasks. It has proven especially effective for discriminative tasks, surpassing the trending generative models. However, generative models perform better in image generation and detail enhancement. Thus, it is natural for us to find a connection between SSL and generative models to further enhance the representation capacity of SSL. As generative models can create new samples by approximating the data distribution, such modeling should also lead to a semantic understanding of the raw visual data, which is necessary for recognition tasks. This enlightens us to combine the core principle of the diffusion model: diffusion noise, with SSL to learn a competitive recognition model. Specifically, diffusion noise can be viewed as a particular state of mask that reveals a close relationship between masked image modeling (MIM) and diffusion models. In this paper, we propose N-JEPA (Noise-based JEPA) to incorporate diffusion noise into MIM by the position embedding of masked tokens. The multi-level noise schedule is a series of feature augmentations to further enhance the robustness of our model. We perform a comprehensive study to confirm its effectiveness in the classification of downstream tasks. Codes will be released soon in public.
Related papers
- Glauber Generative Model: Discrete Diffusion Models via Binary Classification [21.816933208895843]
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models.<n>GGM deploys a Markov chain to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens.<n>We show that it outperforms existing discrete diffusion models in language generation and image generation.
arXiv Detail & Related papers (2024-05-27T10:42:13Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
We introduce SODA, a self-supervised diffusion model, designed for representation learning.
The model incorporates an image encoder, which distills a source view into a compact representation, that guides the generation of related novel views.
We show that by imposing a tight bottleneck between the encoder and a denoising decoder, we can turn diffusion models into strong representation learners.
arXiv Detail & Related papers (2023-11-29T18:53:34Z) - An Efficient Membership Inference Attack for the Diffusion Model by
Proximal Initialization [58.88327181933151]
In this paper, we propose an efficient query-based membership inference attack (MIA)
Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models.
To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the text-to-speech task.
arXiv Detail & Related papers (2023-05-26T16:38:48Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERT is a new generative masked language model based on discrete diffusion models.
We propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step.
Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improvement over existing diffusion models for text.
arXiv Detail & Related papers (2022-11-28T03:25:49Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.