ASPERA: A Simulated Environment to Evaluate Planning for Complex Action Execution
- URL: http://arxiv.org/abs/2507.15501v1
- Date: Mon, 21 Jul 2025 11:07:05 GMT
- Title: ASPERA: A Simulated Environment to Evaluate Planning for Complex Action Execution
- Authors: Alexandru Coca, Mark Gaynor, Zhenxing Zhang, Jianpeng Cheng, Bo-Hsiang Tseng, Pete Boothroyd, Héctor Martinez Alonso, Diarmuid Ó Séaghdha, Anders Johannsen,
- Abstract summary: This work evaluates the potential of large language models to power digital assistants capable of complex action execution.<n>We develop ASPERA, a framework comprising an assistant library simulation and a human-assisted LLM data generation engine.
- Score: 39.136887932576286
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This work evaluates the potential of large language models (LLMs) to power digital assistants capable of complex action execution. These assistants rely on pre-trained programming knowledge to execute multi-step goals by composing objects and functions defined in assistant libraries into action execution programs. To achieve this, we develop ASPERA, a framework comprising an assistant library simulation and a human-assisted LLM data generation engine. Our engine allows developers to guide LLM generation of high-quality tasks consisting of complex user queries, simulation state and corresponding validation programs, tackling data availability and evaluation robustness challenges. Alongside the framework we release Asper-Bench, an evaluation dataset of 250 challenging tasks generated using ASPERA, which we use to show that program generation grounded in custom assistant libraries is a significant challenge to LLMs compared to dependency-free code generation.
Related papers
- ProjectEval: A Benchmark for Programming Agents Automated Evaluation on Project-Level Code Generation [10.748303323995986]
We introduce ProjectEval, a new benchmark for LLM agents project-level code generation's automated evaluation by simulating user interaction.<n>ProjectEval can evaluate the generated projects by user interaction simulation for execution, and by code similarity through existing objective indicators.<n>We find that systematic engineering project code, overall understanding of the project and comprehensive analysis capability are the keys for LLM agents to achieve practical projects.
arXiv Detail & Related papers (2025-03-10T07:47:27Z) - Assessing LLMs for Front-end Software Architecture Knowledge [0.0]
Large Language Models (LLMs) have demonstrated significant promise in automating software development tasks.<n>This study investigates the capabilities of an LLM in understanding, reproducing, and generating structures within the VIPER architecture.<n> Experimental results, using ChatGPT 4 Turbo 2024-04-09, reveal that the LLM excelled in higher-order tasks like evaluating and creating, but faced challenges with lower-order tasks requiring precise retrieval of architectural details.
arXiv Detail & Related papers (2025-02-26T19:33:35Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
We introduce BigCodeBench, a benchmark that challenges Large Language Models (LLMs) to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks.<n>Our evaluation shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%.<n>We propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information.
arXiv Detail & Related papers (2024-06-22T15:52:04Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Robo-Instruct: Simulator-Augmented Instruction Alignment For Finetuning Code LLMs [42.31298987176411]
We introduce ROBO-INSTRUCT, which synthesizes task-specific simulation environments on the fly during program execution.<n>ROBO-INSTRUCT integrates an LLM-aided post-processing procedure to refine instructions for better alignment with robot programs.
arXiv Detail & Related papers (2024-05-30T15:47:54Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - Self-collaboration Code Generation via ChatGPT [35.88318116340547]
Large Language Models (LLMs) have demonstrated remarkable code-generation ability, but struggle with complex tasks.
We present a self-collaboration framework for code generation employing LLMs, exemplified by ChatGPT.
To effectively organize and manage this virtual team, we incorporate software-development methodology into the framework.
arXiv Detail & Related papers (2023-04-15T16:33:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.