LINR-PCGC: Lossless Implicit Neural Representations for Point Cloud Geometry Compression
- URL: http://arxiv.org/abs/2507.15686v1
- Date: Mon, 21 Jul 2025 14:48:54 GMT
- Title: LINR-PCGC: Lossless Implicit Neural Representations for Point Cloud Geometry Compression
- Authors: Wenjie Huang, Qi Yang, Shuting Xia, He Huang, Zhu Li, Yiling Xu,
- Abstract summary: Implicit Neural Representation (INR) methods solve the problem by encoding overfitted network parameters to the bitstream.<n>Due to the limitation of encoding time and decoder size, current INR based methods only consider lossy geometry compression.<n>We propose Lossless Implicit Neural Representations for Point Cloud Geometry Compression (LINR-PCGC)
- Score: 22.44693836632384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing AI-based point cloud compression methods struggle with dependence on specific training data distributions, which limits their real-world deployment. Implicit Neural Representation (INR) methods solve the above problem by encoding overfitted network parameters to the bitstream, resulting in more distribution-agnostic results. However, due to the limitation of encoding time and decoder size, current INR based methods only consider lossy geometry compression. In this paper, we propose the first INR based lossless point cloud geometry compression method called Lossless Implicit Neural Representations for Point Cloud Geometry Compression (LINR-PCGC). To accelerate encoding speed, we design a group of point clouds level coding framework with an effective network initialization strategy, which can reduce around 60% encoding time. A lightweight coding network based on multiscale SparseConv, consisting of scale context extraction, child node prediction, and model compression modules, is proposed to realize fast inference and compact decoder size. Experimental results show that our method consistently outperforms traditional and AI-based methods: for example, with the convergence time in the MVUB dataset, our method reduces the bitstream by approximately 21.21% compared to G-PCC TMC13v23 and 21.95% compared to SparsePCGC. Our project can be seen on https://huangwenjie2023.github.io/LINR-PCGC/.
Related papers
- Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding [56.066799081747845]
The ever-growing size of neural networks poses serious challenges on resource-constrained devices.<n>We propose a novel post-training compression framework that combines rate-aware quantization with entropy coding.<n>Our method allows for very fast decoding and is compatible with arbitrary quantization grids.
arXiv Detail & Related papers (2025-05-24T15:52:49Z) - Efficient Implicit Neural Compression of Point Clouds via Learnable Activation in Latent Space [10.056460330355193]
Implicit Neural Representations (INRs) have emerged as a powerful paradigm in deep learning.<n>We propose textbfPICO, an INR-based framework for static point cloud compression.<n>Our approach exhibits highly competitive results, with an average PCQM gain of $2.7 times 10-3$.
arXiv Detail & Related papers (2025-04-20T03:37:32Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
This paper specializes in using a deep learning-based probabilistic model to estimate the Shannon's entropy of the point cloud information.
Once the entropy of the point cloud dataset is estimated, we use the learned CVAE model to compress the geometric attributes of the point clouds.
The novelty of our method with bits-back coding specializes in utilizing the learned latent variable model of the CVAE to compress the point cloud data.
arXiv Detail & Related papers (2024-10-09T06:34:48Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
We propose an end-to-end compression method for dense point clouds.
The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model.
arXiv Detail & Related papers (2024-09-16T13:59:43Z) - Hierarchical Prior-based Super Resolution for Point Cloud Geometry
Compression [39.052583172727324]
The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds.
This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression.
arXiv Detail & Related papers (2024-02-17T11:15:38Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
We build an end-to-end point cloud attribute coding method (MNeT) that progressively projects the attributes onto multiscale latent spaces.
We validate our method on a set of point clouds from MVUB and MPEG and show that our method outperforms recently proposed methods and on par with the latest G-PCC version 14.
arXiv Detail & Related papers (2023-03-11T23:39:30Z) - ECM-OPCC: Efficient Context Model for Octree-based Point Cloud
Compression [6.509720419113212]
We propose a sufficient yet efficient context model and design an efficient deep learning for point clouds.
Specifically, we first propose a window-constrained multi-group coding strategy to exploit the autoregressive context.
We also propose a dual transformer architecture to utilize the dependency of current node on its ancestors and siblings.
arXiv Detail & Related papers (2022-11-20T09:20:32Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Unfolding Neural Networks for Compressive Multichannel Blind
Deconvolution [71.29848468762789]
We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution.
In this problem, each channel's measurements are given as convolution of a common source signal and sparse filter.
We demonstrate that our method is superior to classical structured compressive sparse multichannel blind-deconvolution methods in terms of accuracy and speed of sparse filter recovery.
arXiv Detail & Related papers (2020-10-22T02:34:33Z) - OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression [77.8842824702423]
We present a novel deep compression algorithm to reduce the memory footprint of LiDAR point clouds.
Our method exploits the sparsity and structural redundancy between points to reduce the memory footprint.
Our algorithm can be used to reduce the onboard and offboard storage of LiDAR points for applications such as self-driving cars.
arXiv Detail & Related papers (2020-05-14T17:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.