An open dataset of neural networks for hypernetwork research
- URL: http://arxiv.org/abs/2507.15869v1
- Date: Tue, 15 Jul 2025 19:27:04 GMT
- Title: An open dataset of neural networks for hypernetwork research
- Authors: David Kurtenbach, Lior Shamir,
- Abstract summary: We describe a dataset of neural networks, designed for the purpose of hypernetworks research.<n>The dataset includes $104$ LeNet-5 neural networks trained for binary image classification separated into 10 classes.<n>Basic classification results show that the neural networks can be classified with accuracy of 72.0%, indicating that the differences between the neural networks can be identified by supervised machine learning algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the transformative potential of AI, the concept of neural networks that can produce other neural networks by generating model weights (hypernetworks) has been largely understudied. One of the possible reasons is the lack of available research resources that can be used for the purpose of hypernetwork research. Here we describe a dataset of neural networks, designed for the purpose of hypernetworks research. The dataset includes $10^4$ LeNet-5 neural networks trained for binary image classification separated into 10 classes, such that each class contains 1,000 different neural networks that can identify a certain ImageNette V2 class from all other classes. A computing cluster of over $10^4$ cores was used to generate the dataset. Basic classification results show that the neural networks can be classified with accuracy of 72.0%, indicating that the differences between the neural networks can be identified by supervised machine learning algorithms. The ultimate purpose of the dataset is to enable hypernetworks research. The dataset and the code that generates it are open and accessible to the public.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - Closed-Form Interpretation of Neural Network Classifiers with Symbolic Gradients [0.7832189413179361]
I introduce a unified framework for finding a closed-form interpretation of any single neuron in an artificial neural network.
I demonstrate how to interpret neural network classifiers to reveal closed-form expressions of the concepts encoded in their decision boundaries.
arXiv Detail & Related papers (2024-01-10T07:47:42Z) - Bayesian Neural Networks: A Min-Max Game Framework [1.8032347672439046]
In deep learning, Bayesian neural networks (BNN) provide the role of robustness analysis.<n>We study a conservative BNN with the minimax method and formulate a two-player game between a deterministic neural network $f$ and a closed-loop neural network $f + rxi$.
arXiv Detail & Related papers (2023-11-18T17:17:15Z) - Why do CNNs excel at feature extraction? A mathematical explanation [53.807657273043446]
We introduce a novel model for image classification, based on feature extraction, that can be used to generate images resembling real-world datasets.
In our proof, we construct piecewise linear functions that detect the presence of features, and show that they can be realized by a convolutional network.
arXiv Detail & Related papers (2023-07-03T10:41:34Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
We consider the mean squared error analysis for deep convolutional neural networks.
We show that, for additive ridge functions, convolutional neural networks followed by one fully connected layer with ReLU activation functions can reach optimal mini-max rates.
arXiv Detail & Related papers (2022-02-24T14:22:32Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
It is proved extensively that neural networks are universal approximators.
It is specifically proved that for a narrow neural network to approximate a function which is otherwise implemented by a deep Neural network, the network take exponentially large number of neurons.
arXiv Detail & Related papers (2021-10-21T09:30:26Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
We show that the learnability of a neural network is directly related to its size.
We use Betti numbers to measure the topological geometric complexity of input data and the neural network.
We perform the experiments on a real-world dataset MNIST and the results verify our analysis and conclusion.
arXiv Detail & Related papers (2021-09-03T11:45:51Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
We consider the compilation of a binary neural network's decision function into tractable representations such as Ordered Binary Decision Diagrams (OBDDs) and Sentential Decision Diagrams (SDDs)
In experiments, we show that it is feasible to obtain compact representations of neural networks as SDDs.
arXiv Detail & Related papers (2020-04-05T03:21:26Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
We perform a massive evaluation of neural networks with architectures corresponding to random graphs of various types.
We find that none of the classical numerical graph invariants by itself allows to single out the best networks.
We also find that networks with primarily short-range connections perform better than networks which allow for many long-range connections.
arXiv Detail & Related papers (2020-02-19T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.