A Unifying Framework for Semiring-Based Constraint Logic Programming With Negation (full version)
- URL: http://arxiv.org/abs/2507.16067v1
- Date: Mon, 21 Jul 2025 21:04:03 GMT
- Title: A Unifying Framework for Semiring-Based Constraint Logic Programming With Negation (full version)
- Authors: Jeroen Spaans, Jesse Heyninck,
- Abstract summary: Constraint Logic Programming (CLP) is a logic programming formalism used to solve problems requiring the consideration of constraints.<n>We investigate an extension of CLP which unifies many extensions and allows negation in the body.
- Score: 5.911540700785975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constraint Logic Programming (CLP) is a logic programming formalism used to solve problems requiring the consideration of constraints, like resource allocation and automated planning and scheduling. It has previously been extended in various directions, for example to support fuzzy constraint satisfaction, uncertainty, or negation, with different notions of semiring being used as a unifying abstraction for these generalizations. None of these extensions have studied clauses with negation allowed in the body. We investigate an extension of CLP which unifies many of these extensions and allows negation in the body. We provide semantics for such programs, using the framework of approximation fixpoint theory, and give a detailed overview of the impacts of properties of the semirings on the resulting semantics. As such, we provide a unifying framework that captures existing approaches and allows extending them with a more expressive language.
Related papers
- PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling [90.86991492288487]
evaluating constraint on every token can be prohibitively expensive.<n> LCD can distort the global distribution over strings, sampling tokens based only on local information.<n>We show that our approach is superior to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-07T18:30:18Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
Chain-of-Thought (CoT) prompting has shown promise in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose Reasoning-as-Logic-Units (RaLU), which constructs a more reliable reasoning path by aligning logical units between the generated program and their corresponding NL descriptions.
arXiv Detail & Related papers (2025-02-05T08:23:18Z) - A Unified View on Forgetting and Strong Equivalence Notions in Answer
Set Programming [14.342696862884704]
We introduce a novel relativized equivalence notion, which is able to capture all related notions from the literature.
We then introduce an operator that combines projection and a relaxation of (SP)-forgetting to obtain the relativized simplifications.
arXiv Detail & Related papers (2023-12-13T09:05:48Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - Non-Deterministic Approximation Fixpoint Theory and Its Application in
Disjunctive Logic Programming [11.215352918313577]
Approximation fixpoint theory is a framework for studying the semantics of nonmonotonic logics.
We extend AFT to dealing with non-deterministic constructs that allow to handle indefinite information.
The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.
arXiv Detail & Related papers (2022-11-30T18:58:32Z) - Joint Contrastive Learning with Infinite Possibilities [114.45811348666898]
This paper explores useful modifications of the recent development in contrastive learning via novel probabilistic modeling.
We derive a particular form of contrastive loss named Joint Contrastive Learning (JCL)
arXiv Detail & Related papers (2020-09-30T16:24:21Z) - ASP(AC): Answer Set Programming with Algebraic Constraints [20.559497209595822]
We introduce Answer Set Programming with Algebraic Constraints (ASP(AC)), where rules may contain constraints that compare semiring values to weighted formula evaluations.
This work is under consideration for acceptance in Theory and Practice of Logic Programming.
arXiv Detail & Related papers (2020-08-10T10:20:49Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - An ASP semantics for Constraints involving Conditional Aggregates [9.289905977910378]
We elaborate upon the formal foundations of hybrid Answer Set Programming (ASP)
We extend its underlying logical framework with aggregate functions over constraint values and variables.
We put some emphasis on logic programs with linear constraints and show how common ASP aggregates can be regarded as particular cases of so-called conditional linear constraints.
arXiv Detail & Related papers (2020-02-17T12:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.