Learning to Call: A Field Trial of a Collaborative Bandit Algorithm for Improved Message Delivery in Mobile Maternal Health
- URL: http://arxiv.org/abs/2507.16356v1
- Date: Tue, 22 Jul 2025 08:42:17 GMT
- Title: Learning to Call: A Field Trial of a Collaborative Bandit Algorithm for Improved Message Delivery in Mobile Maternal Health
- Authors: Arpan Dasgupta, Mizhaan Maniyar, Awadhesh Srivastava, Sanat Kumar, Amrita Mahale, Aparna Hedge, Arun Suggala, Karthikeyan Shanmugam, Aparna Taneja, Milind Tambe,
- Abstract summary: India's Kilkari program delivers vital maternal health information via weekly voice calls to millions of mothers.<n>The current random call scheduling often results in missed calls and reduced message delivery.<n>This study presents a field trial of a collaborative bandit algorithm designed to optimize call timing by learning individual mothers' preferred call times.
- Score: 30.739508842975862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile health (mHealth) programs utilize automated voice messages to deliver health information, particularly targeting underserved communities, demonstrating the effectiveness of using mobile technology to disseminate crucial health information to these populations, improving health outcomes through increased awareness and behavioral change. India's Kilkari program delivers vital maternal health information via weekly voice calls to millions of mothers. However, the current random call scheduling often results in missed calls and reduced message delivery. This study presents a field trial of a collaborative bandit algorithm designed to optimize call timing by learning individual mothers' preferred call times. We deployed the algorithm with around $6500$ Kilkari participants as a pilot study, comparing its performance to the baseline random calling approach. Our results demonstrate a statistically significant improvement in call pick-up rates with the bandit algorithm, indicating its potential to enhance message delivery and impact millions of mothers across India. This research highlights the efficacy of personalized scheduling in mobile health interventions and underscores the potential of machine learning to improve maternal health outreach at scale.
Related papers
- IRL for Restless Multi-Armed Bandits with Applications in Maternal and Child Health [52.79219652923714]
This paper is the first to present the use of inverse reinforcement learning (IRL) to learn desired rewards for RMABs.<n>We demonstrate improved outcomes in a maternal and child health telehealth program.
arXiv Detail & Related papers (2024-12-11T15:28:04Z) - Preliminary Study of the Impact of AI-Based Interventions on Health and Behavioral Outcomes in Maternal Health Programs [46.220426654734425]
We present evidence that improved listenership through AI-scheduled interventions leads to a better understanding of key health issues during pregnancy and infancy.
This improved understanding has the potential to benefit the health outcomes of mothers and their babies.
arXiv Detail & Related papers (2024-05-23T10:18:20Z) - Improving Health Information Access in the World's Largest Maternal Mobile Health Program via Bandit Algorithms [24.4450506603579]
This paper focuses on Kilkari, the world's largest mHealth program for maternal and child care.
We present a system called CHAHAK that aims to reduce automated dropouts as well as boost engagement with the program.
arXiv Detail & Related papers (2024-05-14T07:21:49Z) - Analyzing and Predicting Low-Listenership Trends in a Large-Scale Mobile
Health Program: A Preliminary Investigation [25.831299045335125]
Kilkari is one of the world's largest mobile health programs which delivers time sensitive audio-messages to pregnant women and new mothers.
We provide an initial analysis of the trajectories of beneficiaries' interaction with the mHealth program.
We examine elements of the program that can be potentially enhanced to boost its success.
arXiv Detail & Related papers (2023-11-13T08:11:09Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Selective Intervention Planning using RMABs: Increasing Program
Engagement to Improve Maternal and Child Health Outcomes [34.38042786168279]
We work with ARMMAN, a non-profit based in India, to further the use of call-based information programs.
We analyzed anonymized call-records of over 300,000 women registered in an awareness program.
We built machine learning based models to predict the long term engagement pattern from call logs and beneficiaries' demographic information.
arXiv Detail & Related papers (2021-03-07T08:47:24Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Missed calls, Automated Calls and Health Support: Using AI to improve
maternal health outcomes by increasing program engagement [26.353309432011724]
India accounts for 11% of maternal deaths globally where a woman dies in childbirth every fifteen minutes.
We analyzed anonymized call-records of over 300,000 women registered in an awareness program created by ARMMAN.
We built robust deep learning based models to predict short term and long term dropout risk from call logs and beneficiaries' demographic information.
arXiv Detail & Related papers (2020-06-13T08:32:41Z) - Transforming unstructured voice and text data into insight for paramedic
emergency service using recurrent and convolutional neural networks [68.8204255655161]
Paramedics often have to make lifesaving decisions within a limited time in an ambulance.
This study aims to automatically fuse voice and text data to provide tailored situational awareness information to paramedics.
arXiv Detail & Related papers (2020-05-30T06:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.