Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
- URL: http://arxiv.org/abs/2507.16534v2
- Date: Sat, 26 Jul 2025 12:33:42 GMT
- Title: Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
- Authors: Shanghai AI Lab, :, Xiaoyang Chen, Yunhao Chen, Zeren Chen, Zhiyun Chen, Hanyun Cui, Yawen Duan, Jiaxuan Guo, Qi Guo, Xuhao Hu, Hong Huang, Lige Huang, Chunxiao Li, Juncheng Li, Qihao Lin, Dongrui Liu, Xinmin Liu, Zicheng Liu, Chaochao Lu, Xiaoya Lu, Jingjing Qu, Qibing Ren, Jing Shao, Jingwei Shi, Jingwei Sun, Peng Wang, Weibing Wang, Jia Xu, Lewen Yan, Xiao Yu, Yi Yu, Boxuan Zhang, Jie Zhang, Weichen Zhang, Zhijie Zheng, Tianyi Zhou, Bowen Zhou,
- Abstract summary: This report presents a comprehensive assessment of their frontier risks.<n>We identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R&D, strategic deception and scheming, self-replication, and collusion.
- Score: 51.17413460785022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-$45^\circ$ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
Related papers
- Systematic Hazard Analysis for Frontier AI using STPA [0.0]
frontier AI companies currently do not describe in detail any structured approach to identifying and analysing hazards.<n>A (Systems-Theoretic Process Analysis) is a systematic methodology for identifying how complex systems can become unsafe, leading to hazards.<n>We evaluateA's ability to broaden the scope, improve traceability and strengthen the robustness of safety assurance for frontier AI systems.
arXiv Detail & Related papers (2025-06-02T15:28:34Z) - An Approach to Technical AGI Safety and Security [72.83728459135101]
We develop an approach to address the risk of harms consequential enough to significantly harm humanity.<n>We focus on technical approaches to misuse and misalignment.<n>We briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
arXiv Detail & Related papers (2025-04-02T15:59:31Z) - Intolerable Risk Threshold Recommendations for Artificial Intelligence [0.2383122657918106]
Frontier AI models may pose severe risks to public safety, human rights, economic stability, and societal value.<n>Risks could arise from deliberate adversarial misuse, system failures, unintended cascading effects, or simultaneous failures across multiple models.<n>16 global AI industry organizations signed the Frontier AI Safety Commitments, and 27 nations and the EU issued a declaration on their intent to define these thresholds.
arXiv Detail & Related papers (2025-03-04T12:30:37Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Risks of AI Scientists: Prioritizing Safeguarding Over Autonomy [65.77763092833348]
This perspective examines vulnerabilities in AI scientists, shedding light on potential risks associated with their misuse.<n>We take into account user intent, the specific scientific domain, and their potential impact on the external environment.<n>We propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
We aim to raise awareness of the dangers of AI misuse in science.
We highlight real-world examples of misuse in chemical science.
We propose a system called SciGuard to control misuse risks for AI models in science.
arXiv Detail & Related papers (2023-12-11T18:50:57Z) - AI Hazard Management: A framework for the systematic management of root
causes for AI risks [0.0]
This paper introduces the AI Hazard Management (AIHM) framework.
It provides a structured process to systematically identify, assess, and treat AI hazards.
It builds upon an AI hazard list from a comprehensive state-of-the-art analysis.
arXiv Detail & Related papers (2023-10-25T15:55:50Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [7.35411010153049]
Best way to reduce risks is to implement comprehensive AI lifecycle governance.<n>Risks can be quantified using metrics from the technical community.<n>This paper explores these issues, focusing on the opportunities, challenges, and potential impacts of such an approach.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - Towards Risk Modeling for Collaborative AI [5.941104748966331]
Collaborative AI systems aim at working together with humans in a shared space to achieve a common goal.
This setting imposes potentially hazardous circumstances due to contacts that could harm human beings.
We introduce a risk modeling approach tailored to Collaborative AI systems.
arXiv Detail & Related papers (2021-03-12T18:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.