TTMBA: Towards Text To Multiple Sources Binaural Audio Generation
- URL: http://arxiv.org/abs/2507.16564v1
- Date: Tue, 22 Jul 2025 13:16:07 GMT
- Title: TTMBA: Towards Text To Multiple Sources Binaural Audio Generation
- Authors: Yuxuan He, Xiaoran Yang, Ningning Pan, Gongping Huang,
- Abstract summary: We propose a cascaded method for text-to-multisource audio generation (TTMBA) with both temporal and spatial control.<n>A pretrained large language model (LLM) segments the text into a structured format with time and spatial details for each sound event.<n>Pretrained mono audio generation network creates multiple mono audios with varying durations for each event.
- Score: 7.4522240306102745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing text-to-audio (TTA) generation methods produce mono outputs, neglecting essential spatial information for immersive auditory experiences. To address this issue, we propose a cascaded method for text-to-multisource binaural audio generation (TTMBA) with both temporal and spatial control. First, a pretrained large language model (LLM) segments the text into a structured format with time and spatial details for each sound event. Next, a pretrained mono audio generation network creates multiple mono audios with varying durations for each event. These mono audios are transformed into binaural audios using a binaural rendering neural network based on spatial data from the LLM. Finally, the binaural audios are arranged by their start times, resulting in multisource binaural audio. Experimental results demonstrate the superiority of the proposed method in terms of both audio generation quality and spatial perceptual accuracy.
Related papers
- In-the-wild Audio Spatialization with Flexible Text-guided Localization [37.60344400859993]
To enhance immersive experiences, audio offers spatial awareness of sounding objects in AR, VR, and embodied AI applications.<n>While existing audio spatialization methods can generally map any available monaural audio to audio signals, they often lack the flexible and interactive control needed in complex multi-object user-interactive environments.<n>We propose a Text-guided Audio Spatialization (TAS) framework that utilizes flexible text prompts and evaluates our model from unified generation and comprehension perspectives.
arXiv Detail & Related papers (2025-06-01T09:41:56Z) - DualSpec: Text-to-spatial-audio Generation via Dual-Spectrogram Guided Diffusion Model [46.60765174200236]
We propose a text-to-spatial-audio (TTSA) generation framework named DualSpec.<n>It first trains variational autoencoders (VAEs) for extracting the latent acoustic representations from sound event audio.<n>Finally, it trains a diffusion model from the latent acoustic representations and text features for the spatial audio generation.
arXiv Detail & Related papers (2025-02-26T09:01:59Z) - Both Ears Wide Open: Towards Language-Driven Spatial Audio Generation [32.24603883810094]
Controlling stereo audio with spatial contexts remains challenging due to high data costs and unstable generative models.<n>We first construct a large-scale, simulation-based, and GPT-assisted dataset, BEWO-1M, with abundant soundscapes and descriptions.<n>By leveraging spatial guidance, our model achieves the objective of generating immersive and controllable spatial audio from text.
arXiv Detail & Related papers (2024-10-14T16:18:29Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation [72.7915031238824]
Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks.
They often suffer from common issues such as semantic misalignment and poor temporal consistency.
We propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio.
arXiv Detail & Related papers (2023-05-29T10:41:28Z) - BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for
Binaural Audio Synthesis [129.86743102915986]
We formulate the synthesis process from a different perspective by decomposing the audio into a common part.
We propose BinauralGrad, a novel two-stage framework equipped with diffusion models to synthesize them respectively.
Experiment results show that BinauralGrad outperforms the existing baselines by a large margin in terms of both object and subject evaluation metrics.
arXiv Detail & Related papers (2022-05-30T02:09:26Z) - Geometry-Aware Multi-Task Learning for Binaural Audio Generation from
Video [94.42811508809994]
We propose an audio spatialization method that draws on visual information in videos to convert their monaural (single-channel) audio to audio.
Whereas existing approaches leverage visual features extracted directly from video frames, our approach explicitly disentangles the geometric cues present in the visual stream to guide the learning process.
arXiv Detail & Related papers (2021-11-21T19:26:45Z) - Exploiting Audio-Visual Consistency with Partial Supervision for Spatial
Audio Generation [45.526051369551915]
We propose an audio spatialization framework to convert a monaural video into a one exploiting the relationship across audio and visual components.
Experiments on benchmark datasets confirm the effectiveness of our proposed framework in both semi-supervised and fully supervised scenarios.
arXiv Detail & Related papers (2021-05-03T09:34:11Z) - Visually Informed Binaural Audio Generation without Binaural Audios [130.80178993441413]
We propose PseudoBinaural, an effective pipeline that is free of recordings.
We leverage spherical harmonic decomposition and head-related impulse response (HRIR) to identify the relationship between spatial locations and received audios.
Our-recording-free pipeline shows great stability in cross-dataset evaluation and achieves comparable performance under subjective preference.
arXiv Detail & Related papers (2021-04-13T13:07:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.