False signatures of non-ergodic behavior in disordered quantum many-body systems
- URL: http://arxiv.org/abs/2507.16567v3
- Date: Wed, 30 Jul 2025 08:28:22 GMT
- Title: False signatures of non-ergodic behavior in disordered quantum many-body systems
- Authors: Adith Sai Aramthottil, Ali Emami Kopaei, Piotr Sierant, Lev Vidmar, Jakub Zakrzewski,
- Abstract summary: Ergodic isolated quantum many-body systems satisfy the eigenstate thermalization hypothesis (ETH)<n>The ETH does not specify what happens to expectation values of local observables within an energy window when the average over disorder realizations is taken.<n>We show how to adjust the energy window when analyzing expectation values of local observables in disordered quantum many-body systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ergodic isolated quantum many-body systems satisfy the eigenstate thermalization hypothesis (ETH), i.e., the expectation values of local observables in the system's eigenstates approach the predictions of the microcanonical ensemble. However, the ETH does not specify what happens to expectation values of local observables within an energy window when the average over disorder realizations is taken. As a result, the expectation values of local observables can be distributed over a relatively wide interval and may exhibit nontrivial structure, as shown in [Phys. Rev. B \textbf{104}, 214201 (2021)] for a quasiperiodic disordered system for site-resolved magnetization. We argue that the non-Gaussian form of this distribution may \textit{falsely} suggest non-ergodicity and a breakdown of ETH. By considering various types of disorder, we find that the functional forms of the distributions of matrix elements of the site-resolved magnetization operator mirror the distribution of the onsite disorder. We argue that this distribution is a direct consequence of the local observable having a finite overlap with moments of the Hamiltonian. We then demonstrate how to adjust the energy window when analyzing expectation values of local observables in disordered quantum many-body systems to correctly assess the system's adherence to ETH, and provide a link between the distribution of expectation values in eigenstates and the outcomes of quench experiments.
Related papers
- Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes [18.344934424278048]
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling.
We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a F"ollmer process.
arXiv Detail & Related papers (2024-03-20T16:33:06Z) - Evolution of expected values in open quantum systems [41.94295877935867]
We show that in some cases the power performed by the system can be considered as a quantum observable.<n>As an application, the pure dephasing process is reinterpreted from this perspective.
arXiv Detail & Related papers (2024-02-29T06:47:28Z) - Diagnosing non-Hermitian Many-Body Localization and Quantum Chaos via Singular Value Decomposition [0.0]
Strong local disorder in interacting quantum spin chains can turn delocalized eigenmodes into localized eigenstates.
This is accompanied by distinct spectral statistics: chaotic for the delocalized phase and integrable for the localized phase.
We ask whether random dissipation (without random disorder) can induce chaotic or localized behavior in an otherwise integrable system.
arXiv Detail & Related papers (2023-11-27T19:00:01Z) - A method to discriminate between localized and chaotic quantum systems [0.0]
We study whether a generic isolated quantum system initially set out of equilibrium can be considered as localized close to its initial state.
By tying the dynamical propagation in the Krylov basis to that in the basis of microstates, we infer qualitative criteria to distinguish systems that remain localized close to their initial state.
arXiv Detail & Related papers (2023-07-20T08:55:02Z) - Exact Entanglement in the Driven Quantum Symmetric Simple Exclusion
Process [0.0]
Entanglement properties of driven quantum systems can potentially differ from the equilibrium situation due to long range coherences.
We derive exact formulae for its mutual information between different subsystems in the steady state and show that it satisfies a volume law.
Surprisingly, the QSSEP entanglement properties only depend on data related to its transport properties and we suspect that such a relation might hold for more general mesoscopic systems.
arXiv Detail & Related papers (2023-04-21T14:37:14Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Partial thermalisation of a two-state system coupled to a finite quantum
bath [0.0]
The eigenstate thermalisation hypothesis (ETH) is a statistical characterisation of eigen-energies, eigenstates and matrix elements of local operators in thermalising quantum systems.
We develop an ETH-like ansatz of a partially thermalising system composed of a spin-1/2 coupled to a finite quantum bath.
arXiv Detail & Related papers (2021-04-07T17:59:57Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Test of Eigenstate Thermalization Hypothesis Based on Local Random
Matrix Theory [4.014524824655106]
We numerically obtain a distribution of maximum fluctuations of eigenstate expectation values for different realizations of the interactions.
The ergodicity of our random matrix ensembles breaks down due to locality.
arXiv Detail & Related papers (2020-05-13T15:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.