Deep Unfolding Network for Nonlinear Multi-Frequency Electrical Impedance Tomography
- URL: http://arxiv.org/abs/2507.16678v1
- Date: Tue, 22 Jul 2025 15:14:41 GMT
- Title: Deep Unfolding Network for Nonlinear Multi-Frequency Electrical Impedance Tomography
- Authors: Giovanni S. Alberti, Damiana Lazzaro, Serena Morigi, Luca Ratti, Matteo Santacesaria,
- Abstract summary: We present a model-based learning paradigm that strategically merges the advantages and interpretability of classical iterative reconstruction with the power of deep learning.<n>This approach integrates graph neural networks (GNNs) within the iterative Proximal Regularized Gauss Newton (PRGN) framework.<n> Notably, the GNN architecture preserves the irregular triangular mesh structure used in the solution of the nonlinear forward model, enabling accurate reconstruction of overlapping tissue fraction concentrations.
- Score: 2.959308758321417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-frequency Electrical Impedance Tomography (mfEIT) represents a promising biomedical imaging modality that enables the estimation of tissue conductivities across a range of frequencies. Addressing this challenge, we present a novel variational network, a model-based learning paradigm that strategically merges the advantages and interpretability of classical iterative reconstruction with the power of deep learning. This approach integrates graph neural networks (GNNs) within the iterative Proximal Regularized Gauss Newton (PRGN) framework. By unrolling the PRGN algorithm, where each iteration corresponds to a network layer, we leverage the physical insights of nonlinear model fitting alongside the GNN's capacity to capture inter-frequency correlations. Notably, the GNN architecture preserves the irregular triangular mesh structure used in the solution of the nonlinear forward model, enabling accurate reconstruction of overlapping tissue fraction concentrations.
Related papers
- Multiscale Analysis of Woven Composites Using Hierarchical Physically Recurrent Neural Networks [0.0]
Multiscale homogenization of woven composites requires detailed micromechanical evaluations.<n>This study introduces a Hierarchical Physically Recurrent Neural Network (HPRNN) employing two levels of surrogate modeling.
arXiv Detail & Related papers (2025-03-06T19:02:32Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
We propose a new type of continuous-time control system, called AutoencODE, based on a controlled field that drives dynamics.
We show that many architectures can be recovered in regions where the loss function is locally convex.
arXiv Detail & Related papers (2023-07-05T13:26:17Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
We propose an integration of tensor networks (TN) into deep neural networks (NNs)
This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space.
We validate the accuracy and efficiency of our method by designing TNN models and providing benchmark results for linear and non-linear regressions, data classification and image recognition on MNIST handwritten digits.
arXiv Detail & Related papers (2022-11-26T20:24:36Z) - Continuous Generative Neural Networks: A Wavelet-Based Architecture in Function Spaces [1.7205106391379021]
We study Continuous Generative Neural Networks (CGNNs) in the continuous setting.
The architecture is inspired by DCGAN, with one fully connected layer, several convolutional layers and nonlinear activation functions.
We present conditions on the convolutional filters and on the nonlinearity that guarantee that a CGNN is injective.
arXiv Detail & Related papers (2022-05-29T11:06:29Z) - Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with
Linear Convergence Rates [7.094295642076582]
Mean-field regime is a theoretically attractive alternative to the NTK (lazy training) regime.
We establish a new linear convergence result for two-layer neural networks trained by continuous-time noisy descent in the mean-field regime.
arXiv Detail & Related papers (2022-05-19T21:05:40Z) - Lattice gauge equivariant convolutional neural networks [0.0]
We propose Lattice gauge equivariant Convolutional Neural Networks (L-CNNs) for generic machine learning applications.
We show that L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks are incapable of finding.
arXiv Detail & Related papers (2020-12-23T19:00:01Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.