No-go theorems for logical gates on product quantum codes
- URL: http://arxiv.org/abs/2507.16797v1
- Date: Tue, 22 Jul 2025 17:46:45 GMT
- Title: No-go theorems for logical gates on product quantum codes
- Authors: Xiaozhen Fu, Han Zheng, Zimu Li, Zi-Wen Liu,
- Abstract summary: Homological products of codes offer a versatile framework for quantum error-correcting codes.<n>We show that non-Clifford logical gates cannot be implemented accessiblely on hypergraph product codes.
- Score: 5.529881798520845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error-correcting codes are essential to the implementation of fault-tolerant quantum computation. Homological products of classical codes offer a versatile framework for constructing quantum error-correcting codes with desirable properties, especially quantum low-density parity check (qLDPC) codes. Based on extensions of the Bravyi--K\"{o}nig theorem that encompass codes without geometric locality, we establish a series of general no-go theorems for fault-tolerant logical gates supported by hypergraph product codes. Specifically, we show that non-Clifford logical gates cannot be implemented transversally on hypergraph product codes of all product dimensions, and that the dimensions impose various limitations on the accessible level of the Clifford hierarchy gates by constant-depth local circuits. We also discuss examples both with and without geometric locality which attain the Clifford hierarchy bounds. Our results reveal fundamental restrictions on logical gates originating from highly general algebraic structures, extending beyond existing knowledge only in geometrically local, finite logical qubits, transversal, or 2-dimensional product cases, and may guide the vital study of fault-tolerant quantum computation with qLDPC codes.
Related papers
- Targeted Clifford logical gates for hypergraph product codes [61.269295538188636]
We construct explicit targeted logical gates for hypergraph product codes.
As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.
arXiv Detail & Related papers (2024-11-26T02:32:44Z) - Classifying Logical Gates in Quantum Codes via Cohomology Operations and Symmetry [0.0]
We construct and classify fault-tolerant logical gates implemented by constant-depth circuits for quantum codes.<n>We present a formalism for addressable and parallel logical gates in LDPC codes viasymmetries.<n>As a byproduct, we find new topological responses of finite higher-form symmetries using higher Pontryagin powers.
arXiv Detail & Related papers (2024-11-24T14:01:37Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [47.52324012811181]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.<n>We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Partitioning qubits in hypergraph product codes to implement logical
gates [0.0]
Transversal gates are the simplest type of fault-tolerant logical gates.
We show that gates can be used as the basis for universal quantum computing on LDPC codes.
arXiv Detail & Related papers (2022-04-22T16:45:19Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Fault-tolerant logical gates in holographic stabilizer codes are
severely restricted [0.0]
We evaluate the usefulness of holographic stabilizer codes for practical purposes by studying their allowed sets of fault-tolerantly implementable gates.
We show that the set of stabilizerly implementable logical operations is contained in the Clifford group for sufficiently localized logical subsystems.
arXiv Detail & Related papers (2021-03-24T18:00:05Z) - Universal Fault-Tolerant Quantum Computing with Stabiliser Codes [0.0]
Quantum computers should have both universal and fault-tolerant logic gates.
A number of no-go theorems constrain the ways in which a set of fault-tolerant logic gates can be universal.
We present a general framework for universal fault-tolerant logic with stabiliser codes.
We show how non-unitary implementations of logic gates provide a general approach to circumvent the no-go theorem.
arXiv Detail & Related papers (2020-12-09T19:01:07Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.