Divisive Decisions: Improving Salience-Based Training for Generalization in Binary Classification Tasks
- URL: http://arxiv.org/abs/2507.17000v1
- Date: Tue, 22 Jul 2025 20:17:08 GMT
- Title: Divisive Decisions: Improving Salience-Based Training for Generalization in Binary Classification Tasks
- Authors: Jacob Piland, Chris Sweet, Adam Czajka,
- Abstract summary: Existing saliency-guided training approaches improve model generalization by incorporating a loss term that compares the model's class activation map (CAM) against a human reference saliency map.<n>Prior work has ignored the false-class CAM(s), that is the model's saliency obtained for incorrect-label class.<n>We use this hypothesis to motivate three new saliency-guided training methods incorporating both true- and false-class model's CAM into the training strategy and a novel post-hoc tool for identifying important features.
- Score: 3.858607108771203
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing saliency-guided training approaches improve model generalization by incorporating a loss term that compares the model's class activation map (CAM) for a sample's true-class ({\it i.e.}, correct-label class) against a human reference saliency map. However, prior work has ignored the false-class CAM(s), that is the model's saliency obtained for incorrect-label class. We hypothesize that in binary tasks the true and false CAMs should diverge on the important classification features identified by humans (and reflected in human saliency maps). We use this hypothesis to motivate three new saliency-guided training methods incorporating both true- and false-class model's CAM into the training strategy and a novel post-hoc tool for identifying important features. We evaluate all introduced methods on several diverse binary close-set and open-set classification tasks, including synthetic face detection, biometric presentation attack detection, and classification of anomalies in chest X-ray scans, and find that the proposed methods improve generalization capabilities of deep learning models over traditional (true-class CAM only) saliency-guided training approaches. We offer source codes and model weights\footnote{GitHub repository link removed to preserve anonymity} to support reproducible research.
Related papers
- Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
A naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked.<n>One potential remedy is incorporating the pre-trained knowledge within the vision foundation models to expand the feature space.<n>By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning fake patterns.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
We propose a generative explanation model that combines the advantages of global and local knowledge.<n>Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.<n>Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
arXiv Detail & Related papers (2024-06-12T07:41:00Z) - Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
We propose an adaptive intra-class variation contrastive learning algorithm for unsupervised Re-ID, called AdaInCV.
The algorithm quantitatively evaluates the learning ability of the model for each class by considering the intra-class variations after clustering.
To be more specific, two new strategies are proposed: Adaptive Sample Mining (AdaSaM) and Adaptive Outlier Filter (AdaOF)
arXiv Detail & Related papers (2024-04-06T15:48:14Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - MENTOR: Human Perception-Guided Pretraining for Increased Generalization [4.737519767218666]
Leveraging human perception into training of convolutional neural networks (CNN) has boosted generalization capabilities of such models in open-set recognition tasks.<n>We introduce MENTOR, which addresses this question through two unique rounds of training CNNs tasked with open-set anomaly detection.<n>We show that MENTOR successfully raises the generalization performance across three different CNN backbones in a variety of anomaly detection tasks.
arXiv Detail & Related papers (2023-10-30T13:50:44Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domain aims to transfer the knowledge between datasets by handling two shifts: domain-shift and categoryshift.
Main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target.
Most existing methods approach this problem by first training the target adapted known and then relying on the single threshold to distinguish unknown target samples.
arXiv Detail & Related papers (2022-12-16T09:01:57Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
We propose a two-stage deep neural network for zero-shot action recognition.
In the sampling stage, we utilize a generative adversarial networks (GAN) trained by action features and word vectors of seen classes.
In the classification stage, we construct a knowledge graph based on the relationship between word vectors of action classes and related objects.
arXiv Detail & Related papers (2021-05-25T09:34:42Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
The goal of generalized zero-shot learning (GZSL) is to recognise both seen and unseen classes.
Most GZSL methods typically learn to synthesise visual representations from semantic information on the unseen classes.
We propose a novel framework that leverages dual variational autoencoders with a triplet loss to learn discriminative latent features.
arXiv Detail & Related papers (2021-01-09T05:21:27Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.