Toward Scalable Video Narration: A Training-free Approach Using Multimodal Large Language Models
- URL: http://arxiv.org/abs/2507.17050v1
- Date: Tue, 22 Jul 2025 22:16:37 GMT
- Title: Toward Scalable Video Narration: A Training-free Approach Using Multimodal Large Language Models
- Authors: Tz-Ying Wu, Tahani Trigui, Sharath Nittur Sridhar, Anand Bodas, Subarna Tripathi,
- Abstract summary: We introduce VideoNarrator, a novel training-free pipeline designed to generate dense video captions.<n>VideoNarrator addresses challenges by leveraging a flexible pipeline where off-the-shelf MLLMs and visual-language models can function as caption generators.<n>Our experimental results demonstrate that the synergistic interaction of these components significantly enhances the quality and accuracy of video narrations.
- Score: 10.585096070697348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce VideoNarrator, a novel training-free pipeline designed to generate dense video captions that offer a structured snapshot of video content. These captions offer detailed narrations with precise timestamps, capturing the nuances present in each segment of the video. Despite advancements in multimodal large language models (MLLMs) for video comprehension, these models often struggle with temporally aligned narrations and tend to hallucinate, particularly in unfamiliar scenarios. VideoNarrator addresses these challenges by leveraging a flexible pipeline where off-the-shelf MLLMs and visual-language models (VLMs) can function as caption generators, context providers, or caption verifiers. Our experimental results demonstrate that the synergistic interaction of these components significantly enhances the quality and accuracy of video narrations, effectively reducing hallucinations and improving temporal alignment. This structured approach not only enhances video understanding but also facilitates downstream tasks such as video summarization and video question answering, and can be potentially extended for advertising and marketing applications.
Related papers
- Controllable Hybrid Captioner for Improved Long-form Video Understanding [0.24578723416255746]
Video data is extremely dense and high-dimensional.<n>Text-based summaries of video content offer a way to represent content in a much more compact manner than raw.<n>We introduce Vision Language Models (VLMs) to enrich the memory with static scene descriptions.
arXiv Detail & Related papers (2025-07-22T22:09:00Z) - Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
We propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm.
Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries.
arXiv Detail & Related papers (2024-10-06T15:03:22Z) - MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions [69.9122231800796]
We present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions.<n>We propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos.<n>Our dataset potentially paves the path for fine-grained large multimodal-language model training.
arXiv Detail & Related papers (2024-07-30T16:43:24Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - HowToCaption: Prompting LLMs to Transform Video Annotations at Scale [72.69268311756082]
We propose to leverage the capabilities of large language models (LLMs) to obtain high-quality video descriptions aligned with videos at scale.
We introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture the contextual information beyond one single sentence.
We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption.
arXiv Detail & Related papers (2023-10-07T19:32:55Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVL is a novel hierarchical video-language embedding that simultaneously accounts for both long-term and short-term associations.
We introduce a hierarchical contrastive training objective that encourages text-visual alignment at both the clip level and video level.
Our hierarchical scheme yields a clip representation that outperforms its single-level counterpart as well as a long-term video representation that achieves SotA.
arXiv Detail & Related papers (2023-01-05T21:53:19Z) - Language Models with Image Descriptors are Strong Few-Shot
Video-Language Learners [167.0346394848718]
We propose VidIL, a few-shot Video-language Learner via Image and Language models.
We use the image-language models to translate the video content into frame captions, object, attribute, and event phrases.
We then instruct a language model, with a prompt containing a few in-context examples, to generate a target output from the composed content.
arXiv Detail & Related papers (2022-05-22T05:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.