HySafe-AI: Hybrid Safety Architectural Analysis Framework for AI Systems: A Case Study
- URL: http://arxiv.org/abs/2507.17118v1
- Date: Wed, 23 Jul 2025 01:41:51 GMT
- Title: HySafe-AI: Hybrid Safety Architectural Analysis Framework for AI Systems: A Case Study
- Authors: Mandar Pitale, Jelena Frtunikj, Abhinaw Priyadershi, Vasu Singh, Maria Spence,
- Abstract summary: AI has become integral to safety-critical areas like autonomous driving systems (ADS) and robotics.<n>In this paper, we review different architectural solutions and then evaluate the efficacy of common safety analyses.<n>We introduce HySAFE-AI, a hybrid framework that adapts traditional methods to evaluate the safety of AI systems.
- Score: 5.447634497206096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI has become integral to safety-critical areas like autonomous driving systems (ADS) and robotics. The architecture of recent autonomous systems are trending toward end-to-end (E2E) monolithic architectures such as large language models (LLMs) and vision language models (VLMs). In this paper, we review different architectural solutions and then evaluate the efficacy of common safety analyses such as failure modes and effect analysis (FMEA) and fault tree analysis (FTA). We show how these techniques can be improved for the intricate nature of the foundational models, particularly in how they form and utilize latent representations. We introduce HySAFE-AI, Hybrid Safety Architectural Analysis Framework for AI Systems, a hybrid framework that adapts traditional methods to evaluate the safety of AI systems. Lastly, we offer hints of future work and suggestions to guide the evolution of future AI safety standards.
Related papers
- BlueGlass: A Framework for Composite AI Safety [0.2999888908665658]
This paper introduces BlueGlass, a framework designed to facilitate AI safety by providing a unified infrastructure.<n>To demonstrate the utility of this framework, we present three safety-oriented analyses on vision-language evaluation.<n>More broadly, this work contributes infrastructure and findings for building more robust and reliable AI systems.
arXiv Detail & Related papers (2025-07-14T09:45:34Z) - Report on NSF Workshop on Science of Safe AI [75.96202715567088]
New advances in machine learning are leading to new opportunities to develop technology-based solutions to societal problems.<n>To fulfill the promise of AI, we must address how to develop AI-based systems that are accurate and performant but also safe and trustworthy.<n>This report is the result of the discussions in the working groups that addressed different aspects of safety at the workshop.
arXiv Detail & Related papers (2025-06-24T18:55:29Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.<n> AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.<n>We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.<n>We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.<n>We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Model-Driven Security Analysis of Self-Sovereign Identity Systems [2.5475486924467075]
We propose a model-driven security analysis framework for analyzing architectural patterns of SSI systems.
Our framework mechanizes a modeling language to formalize patterns and threats with security properties in temporal logic.
We present typical vulnerable patterns verified by SecureSSI.
arXiv Detail & Related papers (2024-06-02T05:44:32Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
We present the first systematic literature review of explainable methods for safe and trustworthy autonomous driving.
We identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation.
We propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
arXiv Detail & Related papers (2024-02-08T09:08:44Z) - Architecting Safer Autonomous Aviation Systems [1.2599533416395767]
This paper considers common architectural patterns used within traditional aviation systems and explores their safety and safety assurance implications.
Considering safety as an architectural property, we discuss both the allocation of safety requirements and the architectural trade-offs involved early in the design lifecycle.
arXiv Detail & Related papers (2023-01-09T21:02:18Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - On Safety Assessment of Artificial Intelligence [0.0]
We show that many models of artificial intelligence, in particular machine learning, are statistical models.
Part of the budget of dangerous random failures for the relevant safety integrity level needs to be used for the probabilistic faulty behavior of the AI system.
We propose a research challenge that may be decisive for the use of AI in safety related systems.
arXiv Detail & Related papers (2020-02-29T14:05:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.