Decentralized Federated Learning of Probabilistic Generative Classifiers
- URL: http://arxiv.org/abs/2507.17285v1
- Date: Wed, 23 Jul 2025 07:45:20 GMT
- Title: Decentralized Federated Learning of Probabilistic Generative Classifiers
- Authors: Aritz Pérez, Carlos Echegoyen, Guzmán Santafé,
- Abstract summary: We focus on model learning over decentralized architectures, where users collaborate directly to update the global model without relying on a central server.<n>The proposal involves sharing local statistics with neighboring nodes, where each node aggregates the neighbors' information.<n>Experiments demonstrate that the algorithm consistently converges to a globally competitive model across a wide range of network topologies.
- Score: 4.792851066169872
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning is a paradigm of increasing relevance in real world applications, aimed at building a global model across a network of heterogeneous users without requiring the sharing of private data. We focus on model learning over decentralized architectures, where users collaborate directly to update the global model without relying on a central server. In this context, the current paper proposes a novel approach to collaboratively learn probabilistic generative classifiers with a parametric form. The framework is composed by a communication network over a set of local nodes, each of one having its own local data, and a local updating rule. The proposal involves sharing local statistics with neighboring nodes, where each node aggregates the neighbors' information and iteratively learns its own local classifier, which progressively converges to a global model. Extensive experiments demonstrate that the algorithm consistently converges to a globally competitive model across a wide range of network topologies, network sizes, local dataset sizes, and extreme non-i.i.d. data distributions.
Related papers
- Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning [7.893874342163829]
We propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally.<n>We first introduce the concept of the geometric shape of an embedding distribution.<n>We then address the challenge of obtaining global geometric shapes under privacy constraints.
arXiv Detail & Related papers (2025-03-09T05:30:28Z) - Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions [1.6385815610837167]
Federated Cluster-Wise Refinement (FedCRef) involves clients that collaboratively train models on clusters with similar data distributions.
In these groups, clients collaboratively train a shared model representing each data distribution, while continuously refining their local clusters to enhance data association accuracy.
This iterative process allows our system to identify all potential data distributions across the network and develop robust representation models for each.
arXiv Detail & Related papers (2024-08-20T09:05:44Z) - Proximity-based Self-Federated Learning [1.0066310107046081]
This paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning.
Unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy.
arXiv Detail & Related papers (2024-07-17T08:44:45Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - Decentralised Person Re-Identification with Selective Knowledge
Aggregation [56.40855978874077]
Existing person re-identification (Re-ID) methods mostly follow a centralised learning paradigm which shares all training data to a collection for model learning.
Two recent works have introduced decentralised (federated) Re-ID learning for constructing a globally generalised model (server)
However, these methods are poor on how to adapt the generalised model to maximise its performance on individual client domain Re-ID tasks.
We present a new Selective Knowledge Aggregation approach to decentralised person Re-ID to optimise the trade-off between model personalisation and generalisation.
arXiv Detail & Related papers (2021-10-21T18:09:53Z) - Federated Learning from Small Datasets [48.879172201462445]
Federated learning allows multiple parties to collaboratively train a joint model without sharing local data.
We propose a novel approach that intertwines model aggregations with permutations of local models.
The permutations expose each local model to a daisy chain of local datasets resulting in more efficient training in data-sparse domains.
arXiv Detail & Related papers (2021-10-07T13:49:23Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
Federated learning is a method of training models on private data distributed over multiple devices.
We propose a new federated learning algorithm that jointly learns compact local representations on each device.
We also evaluate on the task of personalized mood prediction from real-world mobile data where privacy is key.
arXiv Detail & Related papers (2020-01-06T12:40:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.