CartoonAlive: Towards Expressive Live2D Modeling from Single Portraits
- URL: http://arxiv.org/abs/2507.17327v1
- Date: Wed, 23 Jul 2025 08:52:48 GMT
- Title: CartoonAlive: Towards Expressive Live2D Modeling from Single Portraits
- Authors: Chao He, Jianqiang Ren, Jianjing Xiang, Xiejie Shen,
- Abstract summary: We present CartoonAlive, an innovative method for generating high-quality Live2D digital humans from a single input portrait image.<n>Our work provides a practical and scalable solution for creating interactive 2D cartoon characters, opening new possibilities in digital content creation and virtual character animation.
- Score: 1.3695921386586667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of large foundation models, AIGC, cloud rendering, and real-time motion capture technologies, digital humans are now capable of achieving synchronized facial expressions and body movements, engaging in intelligent dialogues driven by natural language, and enabling the fast creation of personalized avatars. While current mainstream approaches to digital humans primarily focus on 3D models and 2D video-based representations, interactive 2D cartoon-style digital humans have received relatively less attention. Compared to 3D digital humans that require complex modeling and high rendering costs, and 2D video-based solutions that lack flexibility and real-time interactivity, 2D cartoon-style Live2D models offer a more efficient and expressive alternative. By simulating 3D-like motion through layered segmentation without the need for traditional 3D modeling, Live2D enables dynamic and real-time manipulation. In this technical report, we present CartoonAlive, an innovative method for generating high-quality Live2D digital humans from a single input portrait image. CartoonAlive leverages the shape basis concept commonly used in 3D face modeling to construct facial blendshapes suitable for Live2D. It then infers the corresponding blendshape weights based on facial keypoints detected from the input image. This approach allows for the rapid generation of a highly expressive and visually accurate Live2D model that closely resembles the input portrait, within less than half a minute. Our work provides a practical and scalable solution for creating interactive 2D cartoon characters, opening new possibilities in digital content creation and virtual character animation. The project homepage is https://human3daigc.github.io/CartoonAlive_webpage/.
Related papers
- Animating the Uncaptured: Humanoid Mesh Animation with Video Diffusion Models [71.78723353724493]
Animation of humanoid characters is essential in various graphics applications.<n>We propose an approach to synthesize 4D animated sequences of input static 3D humanoid meshes.
arXiv Detail & Related papers (2025-03-20T10:00:22Z) - Textoon: Generating Vivid 2D Cartoon Characters from Text Descriptions [12.699709535247678]
We introduce Textoon, an innovative method for generating diverse 2D cartoon characters in the Live2D format based on text descriptions.<n>The Textoon leverages cutting-edge language and vision models to comprehend textual intentions and generate 2D appearance.
arXiv Detail & Related papers (2025-01-17T08:09:06Z) - Real3D-Portrait: One-shot Realistic 3D Talking Portrait Synthesis [88.17520303867099]
One-shot 3D talking portrait generation aims to reconstruct a 3D avatar from an unseen image, and then animate it with a reference video or audio.
We present Real3D-Potrait, a framework that improves the one-shot 3D reconstruction power with a large image-to-plane model.
Experiments show that Real3D-Portrait generalizes well to unseen identities and generates more realistic talking portrait videos.
arXiv Detail & Related papers (2024-01-16T17:04:30Z) - Generating Animatable 3D Cartoon Faces from Single Portraits [51.15618892675337]
We present a novel framework to generate animatable 3D cartoon faces from a single portrait image.
We propose a two-stage reconstruction method to recover the 3D cartoon face with detailed texture.
Finally, we propose a semantic preserving face rigging method based on manually created templates and deformation transfer.
arXiv Detail & Related papers (2023-07-04T04:12:50Z) - AG3D: Learning to Generate 3D Avatars from 2D Image Collections [96.28021214088746]
We propose a new adversarial generative model of realistic 3D people from 2D images.
Our method captures shape and deformation of the body and loose clothing by adopting a holistic 3D generator.
We experimentally find that our method outperforms previous 3D- and articulation-aware methods in terms of geometry and appearance.
arXiv Detail & Related papers (2023-05-03T17:56:24Z) - Physically Plausible Animation of Human Upper Body from a Single Image [41.027391105867345]
We present a new method for generating controllable, dynamically responsive, and photorealistic human animations.
Given an image of a person, our system allows the user to generate Physically plausible Upper Body Animation (PUBA) using interaction in the image space.
arXiv Detail & Related papers (2022-12-09T09:36:59Z) - AniFaceGAN: Animatable 3D-Aware Face Image Generation for Video Avatars [71.00322191446203]
2D generative models often suffer from undesirable artifacts when rendering images from different camera viewpoints.
Recently, 3D-aware GANs extend 2D GANs for explicit disentanglement of camera pose by leveraging 3D scene representations.
We propose an animatable 3D-aware GAN for multiview consistent face animation generation.
arXiv Detail & Related papers (2022-10-12T17:59:56Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints.
To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space.
Our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs.
arXiv Detail & Related papers (2022-08-01T01:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.