HiProbe-VAD: Video Anomaly Detection via Hidden States Probing in Tuning-Free Multimodal LLMs
- URL: http://arxiv.org/abs/2507.17394v1
- Date: Wed, 23 Jul 2025 10:41:46 GMT
- Title: HiProbe-VAD: Video Anomaly Detection via Hidden States Probing in Tuning-Free Multimodal LLMs
- Authors: Zhaolin Cai, Fan Li, Ziwei Zheng, Yanjun Qin,
- Abstract summary: Video Anomaly Detection (VAD) aims to identify and locate deviations from normal patterns in video sequences.<n>We propose HiProbe-VAD, a novel framework that leverages pre-trained Multimodal Large Language Models (MLLMs) for VAD without requiring fine-tuning.
- Score: 8.18063726177317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video Anomaly Detection (VAD) aims to identify and locate deviations from normal patterns in video sequences. Traditional methods often struggle with substantial computational demands and a reliance on extensive labeled datasets, thereby restricting their practical applicability. To address these constraints, we propose HiProbe-VAD, a novel framework that leverages pre-trained Multimodal Large Language Models (MLLMs) for VAD without requiring fine-tuning. In this paper, we discover that the intermediate hidden states of MLLMs contain information-rich representations, exhibiting higher sensitivity and linear separability for anomalies compared to the output layer. To capitalize on this, we propose a Dynamic Layer Saliency Probing (DLSP) mechanism that intelligently identifies and extracts the most informative hidden states from the optimal intermediate layer during the MLLMs reasoning. Then a lightweight anomaly scorer and temporal localization module efficiently detects anomalies using these extracted hidden states and finally generate explanations. Experiments on the UCF-Crime and XD-Violence datasets demonstrate that HiProbe-VAD outperforms existing training-free and most traditional approaches. Furthermore, our framework exhibits remarkable cross-model generalization capabilities in different MLLMs without any tuning, unlocking the potential of pre-trained MLLMs for video anomaly detection and paving the way for more practical and scalable solutions.
Related papers
- Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought [58.321044666612174]
Vad-R1 is an end-to-end MLLM-based framework for Video Anomaly Reasoning.<n>We design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies.<n>We also propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs.
arXiv Detail & Related papers (2025-05-26T12:05:16Z) - EventVAD: Training-Free Event-Aware Video Anomaly Detection [19.714436150837148]
EventVAD is an event-aware video anomaly detection framework.<n>It combines tailored dynamic graph architectures and multimodal-event reasoning.<n>It achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
arXiv Detail & Related papers (2025-04-17T16:59:04Z) - SlowFastVAD: Video Anomaly Detection via Integrating Simple Detector and RAG-Enhanced Vision-Language Model [52.47816604709358]
Video anomaly detection (VAD) aims to identify unexpected events in videos and has wide applications in safety-critical domains.<n> vision-language models (VLMs) have demonstrated strong multimodal reasoning capabilities, offering new opportunities for anomaly detection.<n>We propose SlowFastVAD, a hybrid framework that integrates a fast anomaly detector with a slow anomaly detector.
arXiv Detail & Related papers (2025-04-14T15:30:03Z) - Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model [63.14883657299359]
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering.<n> tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert, where distribution shifts between pre-training and target datasets constrain target performance, and OpenWorld Stabilization, where catastrophic forgetting erases the model general knowledge.
arXiv Detail & Related papers (2025-03-06T15:29:13Z) - Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation [61.64052577026623]
Real-world multi-view datasets are often heterogeneous and imperfect.<n>We propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment.<n>In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval.
arXiv Detail & Related papers (2025-03-06T07:01:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - VMAD: Visual-enhanced Multimodal Large Language Model for Zero-Shot Anomaly Detection [19.79027968793026]
Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects.
Existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts.
We propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception.
arXiv Detail & Related papers (2024-09-30T09:51:29Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - Holmes-VAD: Towards Unbiased and Explainable Video Anomaly Detection via Multi-modal LLM [35.06386971859359]
Holmes-VAD is a novel framework that leverages precise temporal supervision and rich multimodal instructions.
We construct the first large-scale multimodal VAD instruction-tuning benchmark, VAD-Instruct50k.
Building upon the VAD-Instruct50k dataset, we develop a customized solution for interpretable video anomaly detection.
arXiv Detail & Related papers (2024-06-18T03:19:24Z) - Harnessing Large Language Models for Training-free Video Anomaly Detection [34.76811491190446]
Video anomaly detection (VAD) aims to temporally locate abnormal events in a video.
Training-based methods are prone to be domain-specific, thus being costly for practical deployment.
We propose LAnguage-based VAD (LAVAD), a method tackling VAD in a novel, training-free paradigm.
arXiv Detail & Related papers (2024-04-01T09:34:55Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
We present EVEREST, a surprisingly efficient MVA approach for video representation learning.
It finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning.
Our method significantly reduces the computation and memory requirements of MVA.
arXiv Detail & Related papers (2022-11-19T09:57:01Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.