DFDNet: Dynamic Frequency-Guided De-Flare Network
- URL: http://arxiv.org/abs/2507.17489v1
- Date: Wed, 23 Jul 2025 13:14:59 GMT
- Title: DFDNet: Dynamic Frequency-Guided De-Flare Network
- Authors: Minglong Xue, Aoxiang Ning, Shivakumara Palaiahnakote, Mingliang Zhou,
- Abstract summary: This paper presents a novel dynamic frequency-guided deflare network (DFDNet) that decouples content information from flare artifacts in the frequency domain.<n>The experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods in terms of performance.
- Score: 8.713784455593778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Strong light sources in nighttime photography frequently produce flares in images, significantly degrading visual quality and impacting the performance of downstream tasks. While some progress has been made, existing methods continue to struggle with removing large-scale flare artifacts and repairing structural damage in regions near the light source. We observe that these challenging flare artifacts exhibit more significant discrepancies from the reference images in the frequency domain compared to the spatial domain. Therefore, this paper presents a novel dynamic frequency-guided deflare network (DFDNet) that decouples content information from flare artifacts in the frequency domain, effectively removing large-scale flare artifacts. Specifically, DFDNet consists mainly of a global dynamic frequency-domain guidance (GDFG) module and a local detail guidance module (LDGM). The GDFG module guides the network to perceive the frequency characteristics of flare artifacts by dynamically optimizing global frequency domain features, effectively separating flare information from content information. Additionally, we design an LDGM via a contrastive learning strategy that aligns the local features of the light source with the reference image, reduces local detail damage from flare removal, and improves fine-grained image restoration. The experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods in terms of performance. The code is available at \href{https://github.com/AXNing/DFDNet}{https://github.com/AXNing/DFDNet}.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - Integrating Spatial and Frequency Information for Under-Display Camera Image Restoration [5.696863540133448]
Under-Display Camera (UDC) houses a digital camera lens under a display panel.<n>UDC introduces complex degradations such as noise, blur, decrease in transmittance, and flare.<n>We propose a novel multi-level architecture called SFIM to restore UDC-distorted images.
arXiv Detail & Related papers (2025-01-30T17:30:00Z) - MFDNet: Multi-Frequency Deflare Network for Efficient Nighttime Flare Removal [39.70102431268123]
We propose a lightweight Multi-Frequency Deflare Network (MFDNet) based on the Laplacian Pyramid.
Our network decomposes the flare-corrupted image into low and high-frequency bands, effectively separating the illumination and content information in the image.
Experimental results demonstrate that our approach outperforms state-of-the-art methods in removing nighttime flare on real-world and synthetic images.
arXiv Detail & Related papers (2024-06-26T05:31:36Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images.
convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain.
We propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase.
arXiv Detail & Related papers (2022-09-16T13:56:09Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.