Boosting Ray Search Procedure of Hard-label Attacks with Transfer-based Priors
- URL: http://arxiv.org/abs/2507.17577v1
- Date: Wed, 23 Jul 2025 15:11:25 GMT
- Title: Boosting Ray Search Procedure of Hard-label Attacks with Transfer-based Priors
- Authors: Chen Ma, Xinjie Xu, Shuyu Cheng, Qi Xuan,
- Abstract summary: An effective approach is to search for the optimal ray direction from the benign image that minimizes the $ell_p$-norm distance to the adversarial region.<n>Existing methods use a "sign trick" in gradient estimation to reduce the number of queries.<n>We propose a novel prior-guided approach to improve ray search efficiency both theoretically and empirically.
- Score: 8.736313383211435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most practical and challenging types of black-box adversarial attacks is the hard-label attack, where only the top-1 predicted label is available. One effective approach is to search for the optimal ray direction from the benign image that minimizes the $\ell_p$-norm distance to the adversarial region. The unique advantage of this approach is that it transforms the hard-label attack into a continuous optimization problem. The objective function value is the ray's radius, which can be obtained via binary search at a high query cost. Existing methods use a "sign trick" in gradient estimation to reduce the number of queries. In this paper, we theoretically analyze the quality of this gradient estimation and propose a novel prior-guided approach to improve ray search efficiency both theoretically and empirically. Specifically, we utilize the transfer-based priors from surrogate models, and our gradient estimators appropriately integrate them by approximating the projection of the true gradient onto the subspace spanned by these priors and random directions, in a query-efficient manner. We theoretically derive the expected cosine similarities between the obtained gradient estimators and the true gradient, and demonstrate the improvement achieved by incorporating priors. Extensive experiments on the ImageNet and CIFAR-10 datasets show that our approach significantly outperforms 11 state-of-the-art methods in terms of query efficiency.
Related papers
- Derivative-Free Optimization via Finite Difference Approximation: An Experimental Study [1.3886390523644807]
Derivative-free optimization (DFO) is vital in solving complex optimization problems where only noisy function evaluations are available through an oracle.<n>Two classical iteration approaches are Kiefer-Wolfowitz (KW) and simultaneous perturbation approximation (SPSA) algorithms.<n>This paper conducts a comprehensive experimental comparison among these approaches.
arXiv Detail & Related papers (2024-10-31T18:07:44Z) - A Historical Trajectory Assisted Optimization Method for Zeroth-Order Federated Learning [24.111048817721592]
Federated learning heavily relies on distributed gradient descent techniques.
In the situation where gradient information is not available, gradients need to be estimated from zeroth-order information.
We propose a non-isotropic sampling method to improve the gradient estimation procedure.
arXiv Detail & Related papers (2024-09-24T10:36:40Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
gradient algorithms are an efficient method of approximately solving linear systems.
We show that gradient descent produces accurate predictions, even in cases where it does not converge quickly to the optimum.
Experimentally, gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks.
arXiv Detail & Related papers (2023-06-20T15:07:37Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
We consider the black-box adversarial setting, where the adversary needs to craft adversarial examples without access to the gradients of a target model.
Previous methods attempted to approximate the true gradient either by using the transfer gradient of a surrogate white-box model or based on the feedback of model queries.
We propose two prior-guided random gradient-free (PRGF) algorithms based on biased sampling and gradient averaging.
arXiv Detail & Related papers (2022-03-13T04:06:27Z) - ZARTS: On Zero-order Optimization for Neural Architecture Search [94.41017048659664]
Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency.
This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation.
In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue.
arXiv Detail & Related papers (2021-10-10T09:35:15Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - A nearly Blackwell-optimal policy gradient method [4.873362301533825]
We develop a policy gradient method that optimize the gain, then the bias.
We propose an algorithm that solves the corresponding bi-level optimization using a logarithmic barrier.
arXiv Detail & Related papers (2021-05-28T06:37:02Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
We consider a back-projection based fidelity term as an alternative to the common least squares (LS)
We show that using the BP term, rather than the LS term, requires fewer iterations of optimization algorithms.
arXiv Detail & Related papers (2020-05-03T00:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.