Thinking Isn't an Illusion: Overcoming the Limitations of Reasoning Models via Tool Augmentations
- URL: http://arxiv.org/abs/2507.17699v1
- Date: Wed, 23 Jul 2025 17:04:20 GMT
- Title: Thinking Isn't an Illusion: Overcoming the Limitations of Reasoning Models via Tool Augmentations
- Authors: Zhao Song, Song Yue, Jiahao Zhang,
- Abstract summary: Large Reasoning Models (LRMs) are designed to output a step-by-step thinking process before arriving at a final answer to handle complex reasoning tasks.<n>Recent empirical studies suggest that LLMs without explicit reasoning actually outperform LRMs on tasks with low or high complexity.<n>We investigate whether the limitations of LRMs persist when tool augmentations are introduced.
- Score: 11.503915439591735
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Reasoning Models (LRMs) have become a central focus in today's large language model (LLM) research, where models are designed to output a step-by-step thinking process before arriving at a final answer to handle complex reasoning tasks. Despite their promise, recent empirical studies (e.g., [Shojaee et al., 2025] from Apple) suggest that this thinking process may not actually enhance reasoning ability, where LLMs without explicit reasoning actually outperform LRMs on tasks with low or high complexity. In this work, we revisit these findings and investigate whether the limitations of LRMs persist when tool augmentations are introduced. We incorporate two types of tools, Python interpreters and scratchpads, and evaluate three representative LLMs and their LRM counterparts on Apple's benchmark reasoning puzzles. Our results show that, with proper tool use, LRMs consistently outperform their non-reasoning counterparts across all levels of task complexity. These findings challenge the recent narrative that reasoning is an illusion and highlight the potential of tool-augmented LRMs for solving complex problems.
Related papers
- The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity [16.266145641151375]
Large Reasoning Models generate detailed thinking processes before providing answers.<n>We show that LRMs face a complete accuracy collapse beyond certain complexities.<n>We also investigate the reasoning traces in more depth, studying the patterns of explored solutions.
arXiv Detail & Related papers (2025-06-07T22:42:29Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - Reasoning LLMs are Wandering Solution Explorers [5.3795217858078805]
This paper formalizes what constitutes systematic problem solving and identifies common failure modes that reveal reasoning LLMs to be wanderers rather than systematic explorers.<n>Our findings suggest that current models' performance can appear to be competent on simple tasks yet degrade sharply as complexity increases.
arXiv Detail & Related papers (2025-05-26T17:59:53Z) - Exploring the Necessity of Reasoning in LLM-based Agent Scenarios [74.35956310688164]
We propose the LaRMA framework, encompassing nine tasks across Tool Usage, Plan Design, and Problem Solving.<n>Our findings address four research questions: LRMs surpass LLMs in reasoning-intensive tasks like Plan Design, leveraging iterative reflection for superior outcomes.<n>LRMs' enhanced reasoning incurs higher computational costs, prolonged processing, and behavioral challenges, including overthinking and fact-ignoring tendencies.
arXiv Detail & Related papers (2025-03-14T04:34:31Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.