Improving Multislice Electron Ptychography with a Generative Prior
- URL: http://arxiv.org/abs/2507.17800v2
- Date: Fri, 25 Jul 2025 03:14:07 GMT
- Title: Improving Multislice Electron Ptychography with a Generative Prior
- Authors: Christian K. Belardi, Chia-Hao Lee, Yingheng Wang, Justin Lovelace, Kilian Q. Weinberger, David A. Muller, Carla P. Gomes,
- Abstract summary: Multislice electron ptychography (MEP) is an inverse imaging technique that reconstructs the highest-resolution images of atomic crystal structures from diffraction patterns.<n>We develop MEP-Diffusion, a diffusion model trained on a large database of crystal structures specifically for MEP to augment existing iterative solvers.<n>We find that this hybrid approach greatly enhances the quality of the reconstructed 3D volumes, achieving a 90.50% improvement in SSIM over existing methods.
- Score: 40.283053579373025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multislice electron ptychography (MEP) is an inverse imaging technique that computationally reconstructs the highest-resolution images of atomic crystal structures from diffraction patterns. Available algorithms often solve this inverse problem iteratively but are both time consuming and produce suboptimal solutions due to their ill-posed nature. We develop MEP-Diffusion, a diffusion model trained on a large database of crystal structures specifically for MEP to augment existing iterative solvers. MEP-Diffusion is easily integrated as a generative prior into existing reconstruction methods via Diffusion Posterior Sampling (DPS). We find that this hybrid approach greatly enhances the quality of the reconstructed 3D volumes, achieving a 90.50% improvement in SSIM over existing methods.
Related papers
- Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Multi-scale Conditional Generative Modeling for Microscopic Image Restoration [9.345394120765123]
We introduce a multi-scale generative model that enhances conditional image restoration through a novel exploitation of the Brownian Bridge process within wavelet domain.
Our method provides significant acceleration during training and sampling while sustaining a high image generation quality and diversity on par with SOTA diffusion models.
This pioneering technique offers an efficient image restoration framework that harmonizes efficiency with quality, signifying a major stride in incorporating cutting-edge generative models into computational microscopy.
arXiv Detail & Related papers (2024-07-07T05:11:00Z) - CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference [30.195615398809043]
Cryo-EM is an increasingly popular method for determining the atomic resolution 3D structure of macromolecular complexes.
Recent developments in cryo-EM have focused on deep learning for which amortized inference has been used to predict pose.
Here, we propose a new semi-amortized method, cryoSPIN, in which reconstruction begins with amortized inference and then switches to a form of auto-decoding.
arXiv Detail & Related papers (2024-06-15T00:44:32Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models [8.590026259176806]
We propose a diffusion-model-based framework that overcomes the limitations of requiring reference data or prior knowledge about the degradation process.
Our approach utilizes 2D diffusion models to consistently reconstruct 3D volumes and is well-suited for highly downsampled data.
arXiv Detail & Related papers (2023-08-03T07:57:02Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Fast and robust single particle reconstruction in 3D fluorescence
microscopy [1.0625549557437526]
Single particle reconstruction is a powerful technique to improve the axial resolution and the degree of fluorescent labeling.
We propose a single particle reconstruction method dedicated to convolutional models in 3D fluorescence microscopy.
We demonstrate on synthetic approaches in terms of resolution and reconstruction error, while achieving a low computational cost.
arXiv Detail & Related papers (2023-01-23T14:20:01Z) - Dimensionality-Varying Diffusion Process [52.52681373641533]
Diffusion models learn to reverse a signal destruction process to generate new data.
We make a theoretical generalization of the forward diffusion process via signal decomposition.
We show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024times1024$ resolution from 52.40 to 10.46.
arXiv Detail & Related papers (2022-11-29T09:05:55Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.