High-fidelity 3D Gaussian Inpainting: preserving multi-view consistency and photorealistic details
- URL: http://arxiv.org/abs/2507.18023v1
- Date: Thu, 24 Jul 2025 01:48:50 GMT
- Title: High-fidelity 3D Gaussian Inpainting: preserving multi-view consistency and photorealistic details
- Authors: Jun Zhou, Dinghao Li, Nannan Li, Mingjie Wang,
- Abstract summary: Inpainting 3D scenes remains a challenging task due to the inherent irregularity of 3D structures.<n>We propose a novel 3D Gaussian inpainting framework that reconstructs complete 3D scenes by leveraging sparse inpainted views.<n>Our approach outperforms existing state-of-the-art methods in both visual quality and view consistency.
- Score: 8.279171283542066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in multi-view 3D reconstruction and novel-view synthesis, particularly through Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have greatly enhanced the fidelity and efficiency of 3D content creation. However, inpainting 3D scenes remains a challenging task due to the inherent irregularity of 3D structures and the critical need for maintaining multi-view consistency. In this work, we propose a novel 3D Gaussian inpainting framework that reconstructs complete 3D scenes by leveraging sparse inpainted views. Our framework incorporates an automatic Mask Refinement Process and region-wise Uncertainty-guided Optimization. Specifically, we refine the inpainting mask using a series of operations, including Gaussian scene filtering and back-projection, enabling more accurate localization of occluded regions and realistic boundary restoration. Furthermore, our Uncertainty-guided Fine-grained Optimization strategy, which estimates the importance of each region across multi-view images during training, alleviates multi-view inconsistencies and enhances the fidelity of fine details in the inpainted results. Comprehensive experiments conducted on diverse datasets demonstrate that our approach outperforms existing state-of-the-art methods in both visual quality and view consistency.
Related papers
- Visibility-Uncertainty-guided 3D Gaussian Inpainting via Scene Conceptional Learning [63.94919846010485]
3D Gaussian inpainting (3DGI) is challenging in effectively leveraging complementary visual and semantic cues from multiple input views.<n>We propose a method that measures the visibility uncertainties of 3D points across different input views and uses them to guide 3DGI.<n>We build a novel 3DGI framework, VISTA, by integrating VISibility-uncerTainty-guided 3DGI with scene conceptuAl learning.
arXiv Detail & Related papers (2025-04-23T06:21:11Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors [13.883695200241524]
RI3D is a novel approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images.<n>Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions.<n>We produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes.
arXiv Detail & Related papers (2025-03-13T20:16:58Z) - SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction [24.33543853742041]
3D Gaussian Splatting (3DGS) has emerged as a practical and scalable reconstruction method.
We propose an optimization strategy that effectively regularizes splat features by modeling them as the outputs of a corresponding implicit neural field.
Our approach effectively handles static and dynamic cases, as demonstrated by extensive testing across different setups and scene complexities.
arXiv Detail & Related papers (2024-09-17T14:04:20Z) - MVSBoost: An Efficient Point Cloud-based 3D Reconstruction [4.282795945742752]
Efficient and accurate 3D reconstruction is crucial for various applications, including augmented and virtual reality, medical imaging, and cinematic special effects.
Traditional Multi-View Stereo (MVS) systems have been fundamental in these applications, but implicit 3D scene modeling has introduced new possibilities for handling complex topologies and continuous surfaces.
arXiv Detail & Related papers (2024-06-19T13:02:17Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with
Informative-Preserved Reconstruction and Self-Distilled Consistency [120.9499803967496]
We propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points.
Our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction.
By combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded.
arXiv Detail & Related papers (2022-12-20T01:53:40Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.