From Individual Learning to Market Equilibrium: Correcting Structural and Parametric Biases in RL Simulations of Economic Models
- URL: http://arxiv.org/abs/2507.18229v1
- Date: Thu, 24 Jul 2025 09:21:02 GMT
- Title: From Individual Learning to Market Equilibrium: Correcting Structural and Parametric Biases in RL Simulations of Economic Models
- Authors: Zeqiang Zhang, Ruxin Chen,
- Abstract summary: The application of Reinforcement Learning to economic modeling reveals a fundamental conflict between the assumptions of equilibrium theory and the emergent behavior of learning agents.<n>This paper first demonstrates this discrepancy within a search-and-matching model with concave production, showing that a standard RL agent learns a non-equilibrium, monopsonistic policy.<n>We propose a calibrated Mean-Field Reinforcement Learning framework that embeds a representative agent in a fixed macroeconomic field and adjusts the cost function to reflect economic opportunity costs.
- Score: 1.8953148404648696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of Reinforcement Learning (RL) to economic modeling reveals a fundamental conflict between the assumptions of equilibrium theory and the emergent behavior of learning agents. While canonical economic models assume atomistic agents act as `takers' of aggregate market conditions, a naive single-agent RL simulation incentivizes the agent to become a `manipulator' of its environment. This paper first demonstrates this discrepancy within a search-and-matching model with concave production, showing that a standard RL agent learns a non-equilibrium, monopsonistic policy. Additionally, we identify a parametric bias arising from the mismatch between economic discounting and RL's treatment of intertemporal costs. To address both issues, we propose a calibrated Mean-Field Reinforcement Learning framework that embeds a representative agent in a fixed macroeconomic field and adjusts the cost function to reflect economic opportunity costs. Our iterative algorithm converges to a self-consistent fixed point where the agent's policy aligns with the competitive equilibrium. This approach provides a tractable and theoretically sound methodology for modeling learning agents in economic systems within the broader domain of computational social science.
Related papers
- Reasoning Like an Economist: Post-Training on Economic Problems Induces Strategic Generalization in LLMs [25.067282214293904]
This paper explores whether post-training techniques, specifically Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR), can effectively $textitgeneralize$ to multi-agent scenarios.<n>We use economic reasoning as a testbed, leveraging its strong foundations in mathematics and game theory.<n> Comprehensive evaluation on economic reasoning benchmarks and multi-agent games reveals clear improvements in structured reasoning and economic rationality.
arXiv Detail & Related papers (2025-05-31T14:22:40Z) - Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling [1.7546137756031712]
We leverage multi-agent reinforcement learning (RL) to expand the capabilities of agent-based models (ABMs)
We show that RL agents spontaneously learn three distinct strategies for maximising profits, with the optimal strategy depending on the level of market competition and rationality.
We also find that RL agents with independent policies, and without the ability to communicate with each other, spontaneously learn to segregate into different strategic groups, thus increasing market power and overall profits.
arXiv Detail & Related papers (2024-05-03T15:08:25Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - Learning and Calibrating Heterogeneous Bounded Rational Market Behaviour
with Multi-Agent Reinforcement Learning [4.40301653518681]
Agent-based models (ABMs) have shown promise for modelling various real world phenomena incompatible with traditional equilibrium analysis.
Recent developments in multi-agent reinforcement learning (MARL) offer a way to address this issue from a rationality perspective.
We propose a novel technique for representing heterogeneous processing-constrained agents within a MARL framework.
arXiv Detail & Related papers (2024-02-01T17:21:45Z) - Finding Regularized Competitive Equilibria of Heterogeneous Agent
Macroeconomic Models with Reinforcement Learning [151.03738099494765]
We study a heterogeneous agent macroeconomic model with an infinite number of households and firms competing in a labor market.
We propose a data-driven reinforcement learning framework that finds the regularized competitive equilibrium of the model.
arXiv Detail & Related papers (2023-02-24T17:16:27Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Online Learning of Competitive Equilibria in Exchange Economies [94.24357018178867]
In economics, the sharing of scarce resources among multiple rational agents is a classical problem.
We propose an online learning mechanism to learn agent preferences.
We demonstrate the effectiveness of this mechanism through numerical simulations.
arXiv Detail & Related papers (2021-06-11T21:32:17Z) - Solving Heterogeneous General Equilibrium Economic Models with Deep
Reinforcement Learning [0.0]
General equilibrium macroeconomic models are a core tool used by policymakers to understand a nation's economy.
We use techniques from reinforcement learning to solve such models in a way that is simple, heterogeneous, and computationally efficient.
arXiv Detail & Related papers (2021-03-31T10:55:10Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
We establish a framework for directing a society of simple, specialized, self-interested agents to solve sequential decision problems.
We derive a class of decentralized reinforcement learning algorithms.
We demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.
arXiv Detail & Related papers (2020-07-05T16:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.