PS-GS: Gaussian Splatting for Multi-View Photometric Stereo
- URL: http://arxiv.org/abs/2507.18231v1
- Date: Thu, 24 Jul 2025 09:22:02 GMT
- Title: PS-GS: Gaussian Splatting for Multi-View Photometric Stereo
- Authors: Yixiao Chen, Bin Liang, Hanzhi Guo, Yongqing Cheng, Jiayi Zhao, Dongdong Weng,
- Abstract summary: inverse rendering with multi-view photometric stereo (MVPS) yields more accurate 3D reconstructions than the inverse rendering approaches that rely on fixed environment illumination.<n>We introduce the Gaussian Splatting for Multi-view Photometric Stereo (PS-GS), which efficiently and jointly estimates the geometry, materials, and lighting of the object that is illuminated by diverse directional lights (multi-light)<n> Experiments on both synthetic and real datasets demonstrate that our method outperforms prior works in terms of reconstruction accuracy and computational efficiency.
- Score: 8.560379885301705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating inverse rendering with multi-view photometric stereo (MVPS) yields more accurate 3D reconstructions than the inverse rendering approaches that rely on fixed environment illumination. However, efficient inverse rendering with MVPS remains challenging. To fill this gap, we introduce the Gaussian Splatting for Multi-view Photometric Stereo (PS-GS), which efficiently and jointly estimates the geometry, materials, and lighting of the object that is illuminated by diverse directional lights (multi-light). Our method first reconstructs a standard 2D Gaussian splatting model as the initial geometry. Based on the initialization model, it then proceeds with the deferred inverse rendering by the full rendering equation containing a lighting-computing multi-layer perceptron. During the whole optimization, we regularize the rendered normal maps by the uncalibrated photometric stereo estimated normals. We also propose the 2D Gaussian ray-tracing for single directional light to refine the incident lighting. The regularizations and the use of multi-view and multi-light images mitigate the ill-posed problem of inverse rendering. After optimization, the reconstructed object can be used for novel-view synthesis, relighting, and material and shape editing. Experiments on both synthetic and real datasets demonstrate that our method outperforms prior works in terms of reconstruction accuracy and computational efficiency.
Related papers
- Photometric Stereo using Gaussian Splatting and inverse rendering [2.416907802598482]
We revisit the problem of photometric stereo by leveraging recent advances in 3D inverse rendering.<n>This allows us to parameterize the 3D scene to be reconstructed and optimize it in a more interpretable manner.
arXiv Detail & Related papers (2025-07-09T09:22:24Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting [10.918133974256913]
We present Bidirectional Gaussian Primitives, an image-based novel view synthesis technique.
Our approach integrates light intrinsic decomposition into the Gaussian splatting framework, enabling real-time relighting of 3D objects.
arXiv Detail & Related papers (2024-08-23T21:04:40Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - PS-NeRF: Neural Inverse Rendering for Multi-view Photometric Stereo [22.42916940712357]
We present a neural inverse rendering method for MVPS based on implicit representation.
Our method achieves far more accurate shape reconstruction than existing MVPS and neural rendering methods.
arXiv Detail & Related papers (2022-07-23T03:55:18Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction.
We propose a new method that jointly optimize object shape, light directions, and light intensities.
Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.
arXiv Detail & Related papers (2022-07-16T02:46:15Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.