SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
- URL: http://arxiv.org/abs/2507.18323v2
- Date: Tue, 05 Aug 2025 08:06:11 GMT
- Title: SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
- Authors: Minje Park, Jeonghwa Lim, Taehyung Yu, Sunghoon Joo,
- Abstract summary: SemiSegECG is the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation.<n>We propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.
Related papers
- From Token to Rhythm: A Multi-Scale Approach for ECG-Language Pretraining [22.214252217020174]
We introduce MELP, a novel Multi-scale ECG-Language Pretraining (MELP) model that fully leverages hierarchical supervision from ECG-text pairs.<n>We evaluate MELP on three public ECG datasets across multiple tasks, including zero-shot ECG classification, linear probing, and transfer learning.
arXiv Detail & Related papers (2025-06-11T07:22:17Z) - Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
Heartcare Suite is a framework for fine-grained electrocardiogram (ECG) understanding.<n>Heartcare-220K is a high-quality, structured, and comprehensive multimodal ECG dataset.<n>Heartcare-Bench is a benchmark to guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios.
arXiv Detail & Related papers (2025-06-06T07:56:41Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - ECG-FM: An Open Electrocardiogram Foundation Model [3.8270632390229777]
We present ECG-FM, an open foundation model for ECG analysis, and conduct a study using a dataset of 1.5 million ECGs.<n>ECG-FM is a transformer-based model pretrained using a hybrid contrastive and generative self-supervised learning approach.<n>We affirm that ECG-FM is robust, label-efficient, and functionally discriminative by showcasing data scaling experiments, performing a latent space analysis, and generating saliency maps.
arXiv Detail & Related papers (2024-08-09T17:06:49Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
This study introduces a new multimodal contrastive pretaining framework that aims to improve the quality and robustness of learned representations of 12-lead ECG signals.
Our framework comprises two key components, including Cardio Query Assistant (CQA) and ECG Semantics Integrator(ESI)
arXiv Detail & Related papers (2024-05-26T06:45:39Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - ETP: Learning Transferable ECG Representations via ECG-Text Pre-training [10.856365645831728]
ECG-Text Pre-training (ETP) is an innovative framework designed to learn cross-modal representations that link ECG signals with textual reports.
ETP employs an ECG encoder along with a pre-trained language model to align ECG signals with their corresponding textual reports.
arXiv Detail & Related papers (2023-09-06T19:19:26Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
We present a framework for semi-adaptive and domain-supervised semantic segmentation.
It is enhanced by self-supervised monocular depth estimation trained only on unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset.
arXiv Detail & Related papers (2021-08-28T01:33:38Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL [15.552721021992847]
We put forward first benchmarking results for the recently published, freely accessible PTB-XL dataset.
We find that convolutional neural networks, in particular resnet- and inception-based architectures, show the strongest performance across all tasks.
Results are complemented by deeper insights into the classification algorithm in terms of hidden stratification, model uncertainty and an exploratory interpretability analysis.
arXiv Detail & Related papers (2020-04-28T17:55:17Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.