TDR: Task-Decoupled Retrieval with Fine-Grained LLM Feedback for In-Context Learning
- URL: http://arxiv.org/abs/2507.18340v1
- Date: Thu, 24 Jul 2025 12:12:04 GMT
- Title: TDR: Task-Decoupled Retrieval with Fine-Grained LLM Feedback for In-Context Learning
- Authors: Yifu Chen, Bingchen Huang, Zhiling Wang, Yuanchao Du, Junfeng Luo, Lei Shen, Zhineng chen,
- Abstract summary: In-context learning (ICL) has become a classic approach for enabling LLMs to handle various tasks based on a few input-output examples.<n>The effectiveness of ICL heavily relies on the quality of these examples, and previous works which focused on enhancing example retrieval capabilities have achieved impressive performances.
- Score: 15.674990209737182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) has become a classic approach for enabling LLMs to handle various tasks based on a few input-output examples. The effectiveness of ICL heavily relies on the quality of these examples, and previous works which focused on enhancing example retrieval capabilities have achieved impressive performances. However, two challenges remain in retrieving high-quality examples: (1) Difficulty in distinguishing cross-task data distributions, (2) Difficulty in making the fine-grained connection between retriever output and feedback from LLMs. In this paper, we propose a novel framework called TDR. TDR decouples the ICL examples from different tasks, which enables the retrieval module to retrieve examples specific to the target task within a multi-task dataset. Furthermore, TDR models fine-grained feedback from LLMs to supervise and guide the training of the retrieval module, which helps to retrieve high-quality examples. We conducted extensive experiments on a suite of 30 NLP tasks, the results demonstrate that TDR consistently improved results across all datasets and achieves state-of-the-art performance. Meanwhile, our approach is a plug-and-play method, which can be easily combined with various LLMs to improve example retrieval abilities for ICL. The code is available at https://github.com/Nnn-s/TDR.
Related papers
- LLMs as Data Annotators: How Close Are We to Human Performance [47.61698665650761]
Manual annotation of data is labor-intensive, time-consuming, and costly.<n>In-context learning (ICL) in which some examples related to the task are given in the prompt can lead to inefficiencies and suboptimal model performance.<n>This paper presents experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task.
arXiv Detail & Related papers (2025-04-21T11:11:07Z) - LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant [63.28378110792787]
We introduce LamRA, a versatile framework designed to empower Large Multimodal Models with sophisticated retrieval and reranking capabilities.<n>For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning.<n>For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance.
arXiv Detail & Related papers (2024-12-02T17:10:16Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTriever is a novel demonstration retrieval framework that learns a weighted combination of hidden states.
Our method significantly outperforms the state-of-the-art baselines on one-shot NL2 tasks.
arXiv Detail & Related papers (2024-06-12T06:33:54Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
Large language models (LLMs) have demonstrated their ability to learn in-context.
The effectiveness of in-context learning is heavily reliant on the quality of the selected examples.
We propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples.
arXiv Detail & Related papers (2023-07-14T05:23:08Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR) is a single model to retrieve demonstrations for a wide range of tasks.
We propose a multi-task list-wise ranking training framework, with an iterative mining strategy to find high-quality candidates.
Experiments on 30+ tasks across 13 task families and multiple data domains show that UDR significantly outperforms baselines.
arXiv Detail & Related papers (2023-05-07T16:07:11Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Finding Support Examples for In-Context Learning [73.90376920653507]
We propose LENS, a fiLter-thEN-Search method to tackle this challenge in two stages.
First we filter the dataset to obtain informative in-context examples individually.
Then we propose diversity-guided example search which iteratively refines and evaluates the selected example permutations.
arXiv Detail & Related papers (2023-02-27T06:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.