Adversarial Distribution Matching for Diffusion Distillation Towards Efficient Image and Video Synthesis
- URL: http://arxiv.org/abs/2507.18569v1
- Date: Thu, 24 Jul 2025 16:45:05 GMT
- Title: Adversarial Distribution Matching for Diffusion Distillation Towards Efficient Image and Video Synthesis
- Authors: Yanzuo Lu, Yuxi Ren, Xin Xia, Shanchuan Lin, Xing Wang, Xuefeng Xiao, Andy J. Ma, Xiaohua Xie, Jian-Huang Lai,
- Abstract summary: We propose Adrial Distribution Matching (ADM) to align latent predictions between real and fake score estimators for score distillation.<n>Our proposed method achieves superior one-step performance on SDXL compared to DMD2 while consuming less GPU time.<n>Additional experiments that apply multi-step ADM distillation on SD3-Medium, SD3.5-Large, and CogVideoX set a new benchmark towards efficient image and video synthesis.
- Score: 65.77083310980896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distribution Matching Distillation (DMD) is a promising score distillation technique that compresses pre-trained teacher diffusion models into efficient one-step or multi-step student generators. Nevertheless, its reliance on the reverse Kullback-Leibler (KL) divergence minimization potentially induces mode collapse (or mode-seeking) in certain applications. To circumvent this inherent drawback, we propose Adversarial Distribution Matching (ADM), a novel framework that leverages diffusion-based discriminators to align the latent predictions between real and fake score estimators for score distillation in an adversarial manner. In the context of extremely challenging one-step distillation, we further improve the pre-trained generator by adversarial distillation with hybrid discriminators in both latent and pixel spaces. Different from the mean squared error used in DMD2 pre-training, our method incorporates the distributional loss on ODE pairs collected from the teacher model, and thus providing a better initialization for score distillation fine-tuning in the next stage. By combining the adversarial distillation pre-training with ADM fine-tuning into a unified pipeline termed DMDX, our proposed method achieves superior one-step performance on SDXL compared to DMD2 while consuming less GPU time. Additional experiments that apply multi-step ADM distillation on SD3-Medium, SD3.5-Large, and CogVideoX set a new benchmark towards efficient image and video synthesis.
Related papers
- Scale-wise Distillation of Diffusion Models [26.372118630648338]
SwD is a scale-wise distillation framework for diffusion models.<n>It effectively employs next-scale prediction ideas for diffusion-based few-step generators.
arXiv Detail & Related papers (2025-03-20T17:54:02Z) - DDIL: Diversity Enhancing Diffusion Distillation With Imitation Learning [57.3467234269487]
Diffusion models excel at generative modeling (e.g., text-to-image) but sampling requires multiple denoising network passes.<n>Progressive distillation or consistency distillation have shown promise by reducing the number of passes.<n>We show that DDIL consistency improves on baseline algorithms of progressive distillation (PD), Latent consistency models (LCM) and Distribution Matching Distillation (DMD2)
arXiv Detail & Related papers (2024-10-15T18:21:47Z) - Unleashing the Power of One-Step Diffusion based Image Super-Resolution via a Large-Scale Diffusion Discriminator [81.81748032199813]
Diffusion models have demonstrated excellent performance for real-world image super-resolution (Real-ISR)<n>We propose a new One-Step textbfDiffusion model with a larger-scale textbfDiscriminator for SR.<n>Our discriminator is able to distill noisy features from any time step of diffusion models in the latent space.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.<n>We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
We introduce DMD2, a set of techniques that lift this limitation and improve DMD training.
First, we eliminate the regression loss and the need for expensive dataset construction.
Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images.
arXiv Detail & Related papers (2024-05-23T17:59:49Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Hyper-SD: Trajectory Segmented Consistency Model for Efficient Image Synthesis [20.2271205957037]
Hyper-SD is a novel framework that amalgamates the advantages of ODE Trajectory Preservation and Reformulation.
We introduce Trajectory Segmented Consistency Distillation to progressively perform consistent distillation within pre-defined time-step segments.
We incorporate human feedback learning to boost the performance of the model in a low-step regime and mitigate the performance loss incurred by the distillation process.
arXiv Detail & Related papers (2024-04-21T15:16:05Z) - Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation [24.236841051249243]
Distillation methods aim to shift the model from many-shot to single-step inference.
We introduce Latent Adversarial Diffusion Distillation (LADD), a novel distillation approach overcoming the limitations of ADD.
In contrast to pixel-based ADD, LADD utilizes generative features from pretrained latent diffusion models.
arXiv Detail & Related papers (2024-03-18T17:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.