Wide-In, Narrow-Out: Revokable Decoding for Efficient and Effective DLLMs
- URL: http://arxiv.org/abs/2507.18578v1
- Date: Thu, 24 Jul 2025 16:51:33 GMT
- Title: Wide-In, Narrow-Out: Revokable Decoding for Efficient and Effective DLLMs
- Authors: Feng Hong, Geng Yu, Yushi Ye, Haicheng Huang, Huangjie Zheng, Ya Zhang, Yanfeng Wang, Jiangchao Yao,
- Abstract summary: Diffusion Large Language Models (DLLMs) have emerged as a compelling alternative to Autoregressive models.<n>ExistingDLLMs are plagued by a severe quality-speed trade-off, where faster parallel decoding leads to significant performance degradation.<n>We introduce Wide-In, Narrow-Out (WINO), a training-free decoding algorithm that enables revokable decoding inDLLMs.
- Score: 37.94110023657587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Large Language Models (DLLMs) have emerged as a compelling alternative to Autoregressive models, designed for fast parallel generation. However, existing DLLMs are plagued by a severe quality-speed trade-off, where faster parallel decoding leads to significant performance degradation. We attribute this to the irreversibility of standard decoding in DLLMs, which is easily polarized into the wrong decoding direction along with early error context accumulation. To resolve this, we introduce Wide-In, Narrow-Out (WINO), a training-free decoding algorithm that enables revokable decoding in DLLMs. WINO employs a parallel draft-and-verify mechanism, aggressively drafting multiple tokens while simultaneously using the model's bidirectional context to verify and re-mask suspicious ones for refinement. Verified in open-source DLLMs like LLaDA and MMaDA, WINO is shown to decisively improve the quality-speed trade-off. For instance, on the GSM8K math benchmark, it accelerates inference by 6$\times$ while improving accuracy by 2.58%; on Flickr30K captioning, it achieves a 10$\times$ speedup with higher performance. More comprehensive experiments are conducted to demonstrate the superiority and provide an in-depth understanding of WINO.
Related papers
- Accelerating Diffusion LLMs via Adaptive Parallel Decoding [50.9948753314669]
We introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel.<n>APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
arXiv Detail & Related papers (2025-05-31T06:10:10Z) - Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding [51.711605076319216]
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities.<n>We introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop.<n>We propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality.
arXiv Detail & Related papers (2025-05-28T17:39:15Z) - Constrained Decoding with Speculative Lookaheads [13.085794785286305]
We propose constrained decoding with speculative lookaheads (CSL)<n>CSL is motivated by the recently proposed idea of speculative decoding that uses a much smaller draft LLM for generation and a larger target LLM for verification.<n>We evaluate CDSL in two constraint decoding tasks with three LLM families and achieve 2.2x to 12.15x speedup over CDLH without significant performance reduction.
arXiv Detail & Related papers (2024-12-09T22:29:57Z) - Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion [55.0194604505437]
Speculative decoding has emerged as a widely adopted method to accelerate large language model inference.<n>This paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences.
arXiv Detail & Related papers (2024-08-10T21:24:25Z) - Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding [15.723047976314751]
Large language models (LLMs) have become ubiquitous in practice and are widely used for generation tasks such as translation, summarization and instruction following.
We propose a hybrid approach that combines language models of different sizes to increase the efficiency of autoregressive decoding.
arXiv Detail & Related papers (2024-02-26T18:59:28Z) - Break the Sequential Dependency of LLM Inference Using Lookahead
Decoding [27.87483106859749]
Lookahead decoding is an exact, parallel decoding algorithm for large language models (LLMs)
Our implementation can speed up autoregressive decoding by up to 1.8x on MT-bench and 4x with strong scaling on multiple GPUs in code completion tasks.
arXiv Detail & Related papers (2024-02-03T06:37:50Z) - Speculative Contrastive Decoding [55.378200871224074]
Large language models(LLMs) exhibit exceptional performance in language tasks, yet their auto-regressive inference is limited due to high computational requirements and is sub-optimal due to the exposure bias.
Inspired by speculative decoding and contrastive decoding, we introduce Speculative Contrastive Decoding(SCD), a straightforward yet powerful decoding approach.
arXiv Detail & Related papers (2023-11-15T14:15:30Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoT is a model-agnostic framework based on parallel decoding.
We show that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach.
arXiv Detail & Related papers (2023-11-14T15:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.