TRPrompt: Bootstrapping Query-Aware Prompt Optimization from Textual Rewards
- URL: http://arxiv.org/abs/2507.18618v1
- Date: Thu, 24 Jul 2025 17:54:44 GMT
- Title: TRPrompt: Bootstrapping Query-Aware Prompt Optimization from Textual Rewards
- Authors: Andreea Nica, Ivan Zakazov, Nicolas Mario Baldwin, Saibo Geng, Robert West,
- Abstract summary: We introduce the Textual Reward Prompt framework (TRPrompt), which unifies approaches by incorporating textual feedback into training of the prompt model.<n>Our framework does not require prior dataset collection and is being iteratively improved with the feedback on the generated prompts.<n>When coupled with the capacity of an LLM to internalize the notion of what a "good" prompt is, the high-resolution signal provided by the textual rewards allows us to train a prompt model yielding state-of-the-art query-specific prompts.
- Score: 9.107586166322923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt optimization improves the reasoning abilities of large language models (LLMs) without requiring parameter updates to the target model. Following heuristic-based "Think step by step" approaches, the field has evolved in two main directions: while one group of methods uses textual feedback to elicit improved prompts from general-purpose LLMs in a training-free way, a concurrent line of research relies on numerical rewards to train a special prompt model, tailored for providing optimal prompts to the target model. In this paper, we introduce the Textual Reward Prompt framework (TRPrompt), which unifies these approaches by directly incorporating textual feedback into training of the prompt model. Our framework does not require prior dataset collection and is being iteratively improved with the feedback on the generated prompts. When coupled with the capacity of an LLM to internalize the notion of what a "good" prompt is, the high-resolution signal provided by the textual rewards allows us to train a prompt model yielding state-of-the-art query-specific prompts for the problems from the challenging math datasets GSMHard and MATH.
Related papers
- Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models? [62.579951798437115]
This work investigates iterative approximate evaluation for arbitrary prompts.<n>It introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework.<n>MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced rollouts.
arXiv Detail & Related papers (2025-07-07T03:20:52Z) - IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
This paper introduces a simple but interpretable prompt (IPO)
IPO utilizes large language models (LLMs) to generate textual prompts dynamically.
We incorporate a large multimodal model (LMM) to condition on visual content by generating image descriptions.
arXiv Detail & Related papers (2024-10-20T14:10:22Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Hard Prompts Made Interpretable: Sparse Entropy Regularization for Prompt Tuning with RL [29.01858866450715]
We present RLPrompt, which aims to find optimal prompt tokens leveraging soft Q-learning.
While the results show promise, we have observed that the prompts frequently appear unnatural, which impedes their interpretability.
We address this limitation by using sparse Tsallis entropy regularization, a principled approach to filtering out unlikely tokens from consideration.
arXiv Detail & Related papers (2024-07-20T03:10:19Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.