Identifying Prompted Artist Names from Generated Images
- URL: http://arxiv.org/abs/2507.18633v1
- Date: Thu, 24 Jul 2025 17:59:44 GMT
- Title: Identifying Prompted Artist Names from Generated Images
- Authors: Grace Su, Sheng-Yu Wang, Aaron Hertzmann, Eli Shechtman, Jun-Yan Zhu, Richard Zhang,
- Abstract summary: A common and controversial use of text-to-image models is to generate pictures by explicitly naming artists.<n>We introduce a benchmark for prompted-artist recognition.<n>The dataset contains 1.95M images covering 110 artists.
- Score: 59.34482128911978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common and controversial use of text-to-image models is to generate pictures by explicitly naming artists, such as "in the style of Greg Rutkowski". We introduce a benchmark for prompted-artist recognition: predicting which artist names were invoked in the prompt from the image alone. The dataset contains 1.95M images covering 110 artists and spans four generalization settings: held-out artists, increasing prompt complexity, multiple-artist prompts, and different text-to-image models. We evaluate feature similarity baselines, contrastive style descriptors, data attribution methods, supervised classifiers, and few-shot prototypical networks. Generalization patterns vary: supervised and few-shot models excel on seen artists and complex prompts, whereas style descriptors transfer better when the artist's style is pronounced; multi-artist prompts remain the most challenging. Our benchmark reveals substantial headroom and provides a public testbed to advance the responsible moderation of text-to-image models. We release the dataset and benchmark to foster further research: https://graceduansu.github.io/IdentifyingPromptedArtists/
Related papers
- ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models [61.55816738318699]
We propose a novel method for data-use auditing in the text-to-image generation model.<n>ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style.<n>The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values.
arXiv Detail & Related papers (2025-04-17T16:15:38Z) - Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models [47.19481598385283]
ArtSavant is a tool to determine the unique style of an artist by comparing it to a reference dataset of works from WikiArt.
We then perform a large-scale empirical study to provide quantitative insight on the prevalence of artistic style copying across 3 popular text-to-image generative models.
arXiv Detail & Related papers (2024-04-11T17:59:43Z) - StyleForge: Enhancing Text-to-Image Synthesis for Any Artistic Styles with Dual Binding [7.291687946822539]
We introduce Single-StyleForge, a novel approach for personalized text-to-image synthesis across diverse artistic styles.
We also present Multi-StyleForge, which enhances image quality and text alignment by binding multiple tokens to partial style attributes.
arXiv Detail & Related papers (2024-04-08T07:43:23Z) - Measuring Style Similarity in Diffusion Models [118.22433042873136]
We present a framework for understanding and extracting style descriptors from images.
Our framework comprises a new dataset curated using the insight that style is a subjective property of an image.
We also propose a method to extract style attribute descriptors that can be used to style of a generated image to the images used in the training dataset of a text-to-image model.
arXiv Detail & Related papers (2024-04-01T17:58:30Z) - DiffMorph: Text-less Image Morphing with Diffusion Models [0.0]
verb|DiffMorph| synthesizes images that mix concepts without the use of textual prompts.
verb|DiffMorph| takes an initial image with conditioning artist-drawn sketches to generate a morphed image.
We employ a pre-trained text-to-image diffusion model and fine-tune it to reconstruct each image faithfully.
arXiv Detail & Related papers (2024-01-01T12:42:32Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
This study investigates inclusive text-to-image generative models that generate images based on human-written prompts.
We show that, for some attributes, images can represent concepts more expressively than text.
We propose a novel approach, ITI-GEN, that leverages readily available reference images for Inclusive Text-to-Image GENeration.
arXiv Detail & Related papers (2023-09-11T15:54:30Z) - Measuring the Success of Diffusion Models at Imitating Human Artists [7.007492782620398]
We show how to measure a model's ability to imitate specific artists.
We use Contrastive Language-Image Pretrained (CLIP) encoders to classify images in a zero-shot fashion.
We also show that a sample of the artist's work can be matched to these imitation images with a high degree of statistical reliability.
arXiv Detail & Related papers (2023-07-08T18:31:25Z) - AI Illustrator: Translating Raw Descriptions into Images by Prompt-based
Cross-Modal Generation [61.77946020543875]
We propose a framework for translating raw descriptions with complex semantics into semantically corresponding images.
Our framework consists of two components: a projection module from Text Embeddings to Image Embeddings based on prompts, and an adapted image generation module built on StyleGAN.
Benefiting from the pre-trained models, our method can handle complex descriptions and does not require external paired data for training.
arXiv Detail & Related papers (2022-09-07T13:53:54Z) - Name Your Style: An Arbitrary Artist-aware Image Style Transfer [25.791029572254597]
We propose a text-driven image style transfer (TxST) that leverages advanced image-text encoders to control arbitrary style transfer.<n>We introduce a contrastive training strategy to effectively extract style descriptions from the image-text model.<n>We also propose a novel and efficient attention module that explores cross-attentions to fuse style and content features.
arXiv Detail & Related papers (2022-02-28T06:21:38Z) - Words as Art Materials: Generating Paintings with Sequential GANs [8.249180979158815]
We investigate the generation of artistic images on a large variance dataset.
This dataset includes images with variations, for example, in shape, color, and content.
We propose a sequential Generative Adversarial Network model.
arXiv Detail & Related papers (2020-07-08T19:17:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.