VGS-ATD: Robust Distributed Learning for Multi-Label Medical Image Classification Under Heterogeneous and Imbalanced Conditions
- URL: http://arxiv.org/abs/2507.18657v2
- Date: Mon, 28 Jul 2025 03:40:05 GMT
- Title: VGS-ATD: Robust Distributed Learning for Multi-Label Medical Image Classification Under Heterogeneous and Imbalanced Conditions
- Authors: Zehui Zhao, Laith Alzubaidi, Haider A. Alwzwazy, Jinglan Zhang, Yuantong Gu,
- Abstract summary: VGS-ATD is a novel distributed learning framework for machine learning.<n>It achieves 92.7% overall accuracy, outperforming centralized learning and swarm learning.<n>It reduces computational costs by up to 50% relative to both centralized and swarm learning.
- Score: 1.8408298575385194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, advanced deep learning architectures have shown strong performance in medical imaging tasks. However, the traditional centralized learning paradigm poses serious privacy risks as all data is collected and trained on a single server. To mitigate this challenge, decentralized approaches such as federated learning and swarm learning have emerged, allowing model training on local nodes while sharing only model weights. While these methods enhance privacy, they struggle with heterogeneous and imbalanced data and suffer from inefficiencies due to frequent communication and the aggregation of weights. More critically, the dynamic and complex nature of clinical environments demands scalable AI systems capable of continuously learning from diverse modalities and multilabels. Yet, both centralized and decentralized models are prone to catastrophic forgetting during system expansion, often requiring full model retraining to incorporate new data. To address these limitations, we propose VGS-ATD, a novel distributed learning framework. To validate VGS-ATD, we evaluate it in experiments spanning 30 datasets and 80 independent labels across distributed nodes, VGS-ATD achieved an overall accuracy of 92.7%, outperforming centralized learning (84.9%) and swarm learning (72.99%), while federated learning failed under these conditions due to high requirements on computational resources. VGS-ATD also demonstrated strong scalability, with only a 1% drop in accuracy on existing nodes after expansion, compared to a 20% drop in centralized learning, highlighting its resilience to catastrophic forgetting. Additionally, it reduced computational costs by up to 50% relative to both centralized and swarm learning, confirming its superior efficiency and scalability.
Related papers
- Robust Five-Class and binary Diabetic Retinopathy Classification Using Transfer Learning and Data Augmentation [1.3492288506683114]
This paper presents a robust deep learning framework for both binary and five-class Diabetic retinopathy (DR) classification.<n>For binary classification, our proposed model achieves a state-of-the-art accuracy of 98.9%, with a precision of 98.6%, recall of 99.3%, F1-score of 98.9%, and an AUC of 99.4%.<n>In the more challenging five-class severity classification task, our model obtains a competitive accuracy of 84.6% and an AUC of 94.1%, outperforming several existing approaches.
arXiv Detail & Related papers (2025-07-23T01:52:27Z) - Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - You Are Your Own Best Teacher: Achieving Centralized-level Performance in Federated Learning under Heterogeneous and Long-tailed Data [32.24154235507531]
Data heterogeneity, stemming from local non-IID data and global long-tailed distributions, is a major challenge in federated learning (FL)<n>We propose FedYoYo to improve representation learning by distilling knowledge between weakly and strongly augmented local samples.<n>We show FedYoYo achieves state-of-the-art results, even surpassing centralized logit adjustment methods by 5.4% under global long-tailed settings.
arXiv Detail & Related papers (2025-03-10T04:57:20Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
We study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi)
This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information.
We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images.
arXiv Detail & Related papers (2022-06-27T06:51:48Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data.
Recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis.
We present a decentralized distributed method that integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy.
arXiv Detail & Related papers (2022-06-20T23:49:38Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.