Concept Probing: Where to Find Human-Defined Concepts (Extended Version)
- URL: http://arxiv.org/abs/2507.18681v1
- Date: Thu, 24 Jul 2025 16:30:10 GMT
- Title: Concept Probing: Where to Find Human-Defined Concepts (Extended Version)
- Authors: Manuel de Sousa Ribeiro, Afonso Leote, João Leite,
- Abstract summary: We propose a method to automatically identify which layer's representations in a neural network model should be considered when probing for a given human-defined concept of interest.<n>We validate our findings through an exhaustive empirical analysis over different neural network models and datasets.
- Score: 3.2443914909457594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Concept probing has recently gained popularity as a way for humans to peek into what is encoded within artificial neural networks. In concept probing, additional classifiers are trained to map the internal representations of a model into human-defined concepts of interest. However, the performance of these probes is highly dependent on the internal representations they probe from, making identifying the appropriate layer to probe an essential task. In this paper, we propose a method to automatically identify which layer's representations in a neural network model should be considered when probing for a given human-defined concept of interest, based on how informative and regular the representations are with respect to the concept. We validate our findings through an exhaustive empirical analysis over different neural network models and datasets.
Related papers
- On the Performance of Concept Probing: The Influence of the Data (Extended Version) [3.2443914909457594]
Concept probing works by training additional classifiers to map the internal representations of a model into human-defined concepts of interest.<n>Research on concept probing has mainly focused on the model being probed or the probing model itself.<n>In this paper, we investigate the effect of the data used to train probing models on their performance.
arXiv Detail & Related papers (2025-07-24T16:18:46Z) - Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
We show that neural networks exhibit patterns in their raw population activity that mirror regularities in the training data.<n>We propose three methods to extract these emerging entities, complementing each other based on label availability and dimensionality.<n>Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data.
arXiv Detail & Related papers (2025-05-16T13:49:43Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.<n>We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.<n>We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
We explore scalable methods for extracting the subgraph of a vision model's computational graph that underlies recognition of a specific visual concept.
We find that our approach extracts circuits that causally affect model output, and that editing these circuits can defend large pretrained models from adversarial attacks.
arXiv Detail & Related papers (2024-04-22T17:00:57Z) - Manipulating Feature Visualizations with Gradient Slingshots [53.94925202421929]
Feature Visualization (FV) is a widely used technique for interpreting the concepts learned by Deep Neural Networks (DNNs)<n>We introduce a novel method, Gradient Slingshots, that enables manipulation of FV without modifying the model architecture or significantly degrading its performance.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Understanding Distributed Representations of Concepts in Deep Neural
Networks without Supervision [25.449397570387802]
We propose an unsupervised method for discovering distributed representations of concepts by selecting a principal subset of neurons.
Our empirical findings demonstrate that instances with similar neuron activation states tend to share coherent concepts.
It can be utilized to identify unlabeled subclasses within data and to detect the causes of misclassifications.
arXiv Detail & Related papers (2023-12-28T07:33:51Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
We present an extension to the method of concept detection, named emphconcept backpropagation, which provides a way of analysing how the information representing a given concept is internalised in a given neural network model.
arXiv Detail & Related papers (2023-07-24T08:21:13Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories.<n>We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation.<n>In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks.
arXiv Detail & Related papers (2023-06-15T08:18:29Z) - On Modifying a Neural Network's Perception [3.42658286826597]
We propose a method which allows one to modify what an artificial neural network is perceiving regarding specific human-defined concepts.
We test the proposed method on different models, assessing whether the performed manipulations are well interpreted by the models, and analyzing how they react to them.
arXiv Detail & Related papers (2023-03-05T12:09:37Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
We instantiate this design on convolutional neural networks (CNNs)
In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
arXiv Detail & Related papers (2020-07-17T19:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.