Scale-Consistent Learning for Partial Differential Equations
- URL: http://arxiv.org/abs/2507.18813v1
- Date: Thu, 24 Jul 2025 21:29:52 GMT
- Title: Scale-Consistent Learning for Partial Differential Equations
- Authors: Zongyi Li, Samuel Lanthaler, Catherine Deng, Michael Chen, Yixuan Wang, Kamyar Azizzadenesheli, Anima Anandkumar,
- Abstract summary: We propose a data augmentation scheme based on scale-consistency properties of PDEs.<n>We then design a scale-informed neural operator that can model a wide range of scales.<n>With scale-consistency, the model trained on $Re$ of 1000 can generalize to $Re$ ranging from 250 to 10000.
- Score: 79.48661503591943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) models have emerged as a promising approach for solving partial differential equations (PDEs) in science and engineering. Previous ML models typically cannot generalize outside the training data; for example, a trained ML model for the Navier-Stokes equations only works for a fixed Reynolds number ($Re$) on a pre-defined domain. To overcome these limitations, we propose a data augmentation scheme based on scale-consistency properties of PDEs and design a scale-informed neural operator that can model a wide range of scales. Our formulation leverages the facts: (i) PDEs can be rescaled, or more concretely, a given domain can be re-scaled to unit size, and the parameters and the boundary conditions of the PDE can be appropriately adjusted to represent the original solution, and (ii) the solution operators on a given domain are consistent on the sub-domains. We leverage these facts to create a scale-consistency loss that encourages matching the solutions evaluated on a given domain and the solution obtained on its sub-domain from the rescaled PDE. Since neural operators can fit to multiple scales and resolutions, they are the natural choice for incorporating scale-consistency loss during training of neural PDE solvers. We experiment with scale-consistency loss and the scale-informed neural operator model on the Burgers' equation, Darcy Flow, Helmholtz equation, and Navier-Stokes equations. With scale-consistency, the model trained on $Re$ of 1000 can generalize to $Re$ ranging from 250 to 10000, and reduces the error by 34% on average of all datasets compared to baselines.
Related papers
- A Multimodal PDE Foundation Model for Prediction and Scientific Text Descriptions [13.48986376824454]
PDE foundation models utilize neural networks to train approximations to multiple differential equations simultaneously.<n>We propose a novel multimodal deep learning approach that leverages a transformer-based architecture to approximate solution operators.<n>Our approach generates interpretable scientific text descriptions, offering deeper insights into the underlying dynamics and solution properties.
arXiv Detail & Related papers (2025-02-09T20:50:28Z) - Diffeomorphic Latent Neural Operators for Data-Efficient Learning of Solutions to Partial Differential Equations [5.308435208832696]
A computed approximation of the solution operator to a system of partial differential equations (PDEs) is needed in various areas of science and engineering.<n>We propose that in order to learn a PDE solution operator that can generalize across multiple domains without needing to sample enough data expressive enough, we can train instead a latent neural operator on just a few ground truth solution fields.
arXiv Detail & Related papers (2024-11-27T03:16:00Z) - Self-supervised Pretraining for Partial Differential Equations [0.0]
We describe a novel approach to building a neural PDE solver leveraging recent advances in transformer based neural network architectures.
Our model can provide solutions for different values of PDE parameters without any need for retraining the network.
arXiv Detail & Related papers (2024-07-03T16:39:32Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present Unisolver, a novel Transformer model trained on diverse data and conditioned on diverse PDEs.<n>Unisolver achieves consistent state-of-the-art on three challenging large-scale benchmarks, showing impressive performance and generalizability.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Koopman neural operator as a mesh-free solver of non-linear partial differential equations [15.410070455154138]
We propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges.
By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, we can equivalently learn the solution of a non-linear PDE family.
The KNO exhibits notable advantages compared with previous state-of-the-art models.
arXiv Detail & Related papers (2023-01-24T14:10:15Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.