LLaVA-NeuMT: Selective Layer-Neuron Modulation for Efficient Multilingual Multimodal Translation
- URL: http://arxiv.org/abs/2507.18940v1
- Date: Fri, 25 Jul 2025 04:23:24 GMT
- Title: LLaVA-NeuMT: Selective Layer-Neuron Modulation for Efficient Multilingual Multimodal Translation
- Authors: Jingxuan Wei, Caijun Jia, Qi Chen, Yujun Cai, Linzhuang Sun, Xiangxiang Zhang, Gaowei Wu, Bihui Yu,
- Abstract summary: LLaVA-NeuMT is a novel framework that explicitly models language-specific and language-agnostic representations to mitigate multilingual interference.<n>Our approach consists of a layer selection mechanism that identifies the most informative layers for different language pairs.<n>We conduct extensive experiments on the M3-Multi30K and M3-AmbigCaps datasets, demonstrating that LLaVA-NeuMT, while fine-tuning only 40% of the model parameters, surpasses full fine-tuning approaches.
- Score: 12.51212639515934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Machine Translation (MMT) enhances translation quality by incorporating visual context, helping to resolve textual ambiguities. While existing MMT methods perform well in bilingual settings, extending them to multilingual translation remains challenging due to cross-lingual interference and ineffective parameter-sharing strategies. To address this, we propose LLaVA-NeuMT, a novel multimodal multilingual translation framework that explicitly models language-specific and language-agnostic representations to mitigate multilingual interference. Our approach consists of a layer selection mechanism that identifies the most informative layers for different language pairs and a neuron-level adaptation strategy that dynamically selects language-specific and agnostic neurons to improve translation quality while reducing redundancy. We conduct extensive experiments on the M3-Multi30K and M3-AmbigCaps datasets, demonstrating that LLaVA-NeuMT, while fine-tuning only 40\% of the model parameters, surpasses full fine-tuning approaches and ultimately achieves SOTA results on both datasets. Our analysis further provides insights into the importance of selected layers and neurons in multimodal multilingual adaptation, offering an efficient and scalable solution to cross-lingual adaptation in multimodal translation.
Related papers
- LANDeRMT: Detecting and Routing Language-Aware Neurons for Selectively Finetuning LLMs to Machine Translation [43.26446958873554]
Large language models (LLMs) have shown promising results in multilingual translation even with limited bilingual supervision.
Recent advancements in large language models (LLMs) have shown promising results in multilingual translation even with limited bilingual supervision.
LandeRMT is a framework that selectively finetunes LLMs to textbfMachine textbfTranslation with diverse translation training data.
arXiv Detail & Related papers (2024-09-29T02:39:42Z) - Mitigating Data Imbalance and Representation Degeneration in
Multilingual Machine Translation [103.90963418039473]
Bi-ACL is a framework that uses only target-side monolingual data and a bilingual dictionary to improve the performance of the MNMT model.
We show that Bi-ACL is more effective both in long-tail languages and in high-resource languages.
arXiv Detail & Related papers (2023-05-22T07:31:08Z) - Active Learning for Multilingual Semantic Parser [65.2180122032335]
We propose the first active learning procedure for multilingual semantic parsing (AL-MSP)
AL-MSP selects only a subset from the existing datasets to be translated.
Our experiments show that AL-MSP significantly reduces translation costs with ideal selection methods.
arXiv Detail & Related papers (2023-01-30T14:19:29Z) - Revamping Multilingual Agreement Bidirectionally via Switched
Back-translation for Multilingual Neural Machine Translation [107.83158521848372]
multilingual agreement (MA) has shown its importance for multilingual neural machine translation (MNMT)
We present textbfBidirectional textbfMultilingual textbfAgreement via textbfSwitched textbfBack-textbftranslation (textbfBMA-SBT)
It is a novel and universal multilingual agreement framework for fine-tuning pre-trained MNMT models.
arXiv Detail & Related papers (2022-09-28T09:14:58Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Multilingual Neural Machine Translation:Can Linguistic Hierarchies Help? [29.01386302441015]
Multilingual Neural Machine Translation (MNMT) trains a single NMT model that supports translation between multiple languages.
The performance of an MNMT model is highly dependent on the type of languages used in training, as transferring knowledge from a diverse set of languages degrades the translation performance due to negative transfer.
We propose a Hierarchical Knowledge Distillation (HKD) approach for MNMT which capitalises on language groups generated according to typological features and phylogeny of languages to overcome the issue of negative transfer.
arXiv Detail & Related papers (2021-10-15T02:31:48Z) - xGQA: Cross-Lingual Visual Question Answering [100.35229218735938]
xGQA is a new multilingual evaluation benchmark for the visual question answering task.
We extend the established English GQA dataset to 7 typologically diverse languages.
We propose new adapter-based approaches to adapt multimodal transformer-based models to become multilingual.
arXiv Detail & Related papers (2021-09-13T15:58:21Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
We propose a multi-task learning framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data.
We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages.
arXiv Detail & Related papers (2020-10-06T06:54:12Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.