Agent0: Leveraging LLM Agents to Discover Multi-value Features from Text for Enhanced Recommendations
- URL: http://arxiv.org/abs/2507.18993v1
- Date: Fri, 25 Jul 2025 06:45:10 GMT
- Title: Agent0: Leveraging LLM Agents to Discover Multi-value Features from Text for Enhanced Recommendations
- Authors: Blaž Škrlj, Benoît Guilleminot, Andraž Tori,
- Abstract summary: Large language models (LLMs) and their associated agent-based frameworks have significantly advanced automated information extraction.<n>This paper presents Agent0, an agent-based system designed to automate information extraction and feature construction from raw, unstructured text.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) and their associated agent-based frameworks have significantly advanced automated information extraction, a critical component of modern recommender systems. While these multitask frameworks are widely used in code generation, their application in data-centric research is still largely untapped. This paper presents Agent0, an LLM-driven, agent-based system designed to automate information extraction and feature construction from raw, unstructured text. Categorical features are crucial for large-scale recommender systems but are often expensive to acquire. Agent0 coordinates a group of interacting LLM agents to automatically identify the most valuable text aspects for subsequent tasks (such as models or AutoML pipelines). Beyond its feature engineering capabilities, Agent0 also offers an automated prompt-engineering tuning method that utilizes dynamic feedback loops from an oracle. Our findings demonstrate that this closed-loop methodology is both practical and effective for automated feature discovery, which is recognized as one of the most challenging phases in current recommender system development.
Related papers
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data.<n>We present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback.<n>Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback.
arXiv Detail & Related papers (2025-06-02T22:36:02Z) - An agentic system with reinforcement-learned subsystem improvements for parsing form-like documents [0.0]
We propose an agentic AI system that leverages Large Language Model (LLM) agents and a reinforcement learning driver agent to automate consistent, self-improving extraction.<n>Our work highlights the limitations of monolithic LLM-based extraction and introduces a modular, multi-agent framework with task-specific prompts.<n>This self-corrective adaptive system handles diverse documents, file formats, layouts, and LLMs, aiming to automate accurate information extraction without the need for human intervention.
arXiv Detail & Related papers (2025-05-16T09:46:10Z) - Auto-SLURP: A Benchmark Dataset for Evaluating Multi-Agent Frameworks in Smart Personal Assistant [16.006675944380078]
Auto-SLURP is a benchmark dataset aimed at evaluating LLM-based multi-agent frameworks in the context of intelligent personal assistants.<n>Auto-SLURP extends the original SLURP dataset by relabeling the data and integrating simulated servers and external services.<n>Our experiments demonstrate that Auto-SLURP presents a significant challenge for current state-of-the-art frameworks.
arXiv Detail & Related papers (2025-04-25T14:17:47Z) - API Agents vs. GUI Agents: Divergence and Convergence [37.13923771130588]
API- and GUI-based large language models (LLMs) interact with graphical user interfaces in a human-like manner.<n>This paper systematically analyzes their divergence and potential convergence.<n>We indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents.
arXiv Detail & Related papers (2025-03-14T04:26:21Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.<n>Recent works have started exploiting large language models (LLM) to lessen such burden.<n>This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.