Clustering-Oriented Generative Attribute Graph Imputation
- URL: http://arxiv.org/abs/2507.19085v1
- Date: Fri, 25 Jul 2025 09:11:38 GMT
- Title: Clustering-Oriented Generative Attribute Graph Imputation
- Authors: Mulin Chen, Bocheng Wang, Jiaxin Zhong, Zongcheng Miao, Xuelong Li,
- Abstract summary: We propose a Clustering-oriented Generative Imputation with reliable Refinement (CGIR) model for attribute-missing graph clustering.<n>We show that CGIR splits attribute-missing graph clustering into the search and mergence of subclusters, which guides to implement node imputation and refinement within a unified framework.
- Score: 46.388653923121566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attribute-missing graph clustering has emerged as a significant unsupervised task, where only attribute vectors of partial nodes are available and the graph structure is intact. The related models generally follow the two-step paradigm of imputation and refinement. However, most imputation approaches fail to capture class-relevant semantic information, leading to sub-optimal imputation for clustering. Moreover, existing refinement strategies optimize the learned embedding through graph reconstruction, while neglecting the fact that some attributes are uncorrelated with the graph. To remedy the problems, we establish the Clustering-oriented Generative Imputation with reliable Refinement (CGIR) model. Concretely, the subcluster distributions are estimated to reveal the class-specific characteristics precisely, and constrain the sampling space of the generative adversarial module, such that the imputation nodes are impelled to align with the correct clusters. Afterwards, multiple subclusters are merged to guide the proposed edge attention network, which identifies the edge-wise attributes for each class, so as to avoid the redundant attributes in graph reconstruction from disturbing the refinement of overall embedding. To sum up, CGIR splits attribute-missing graph clustering into the search and mergence of subclusters, which guides to implement node imputation and refinement within a unified framework. Extensive experiments prove the advantages of CGIR over state-of-the-art competitors.
Related papers
- Divide-Then-Rule: A Cluster-Driven Hierarchical Interpolator for Attribute-Missing Graphs [51.13363550716544]
Deep graph clustering is an unsupervised task aimed at partitioning nodes with incomplete attributes into distinct clusters.<n>Existing imputation methods for attribute-missing graphs often fail to account for the varying amounts of information available across node neighborhoods.<n>We propose Divide-Then-Rule Graph Completion (DTRGC) to address this issue.
arXiv Detail & Related papers (2025-07-12T03:33:19Z) - One Node One Model: Featuring the Missing-Half for Graph Clustering [10.316522132109354]
Feature selection in graph clustering is difficult because it requires simultaneously discovering clusters and identifying the relevant features for these clusters.<n>We introduce a novel paradigm called one node one model", which builds an exclusive model for each node and defines the node label as a combination of predictions for node groups.<n>Specifically, the proposed Feature Personalized Graph Clustering (FPGC)" method identifies cluster-relevant features for each node using a squeeze-and-excitation block, integrating these features into each model to form the final representations.
arXiv Detail & Related papers (2024-12-13T06:42:36Z) - Modularity aided consistent attributed graph clustering via coarsening [6.522020196906943]
Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities.
We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique.
Our algorithm seamlessly integrates graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance.
arXiv Detail & Related papers (2024-07-09T10:42:19Z) - Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
Multi-view clustering methods based on anchor graph factorization lack adequate cluster interpretability for the decomposed matrix.
We address this limitation by using non-negative tensor factorization to decompose an anchor graph tensor that combines anchor graphs from multiple views.
arXiv Detail & Related papers (2024-04-01T03:23:55Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Smoothness Sensor: Adaptive Smoothness-Transition Graph Convolutions for
Attributed Graph Clustering [10.905770964670191]
We propose a smoothness sensor for attributed graph clustering based on adaptive smoothness-transition graph convolutions.
As an alternative to graph-level smoothness, a novel fine-gained node-wise level assessment of smoothness is proposed.
Experiments show that the proposed methods significantly outperform 12 other state-of-the-art baselines in terms of three different metrics.
arXiv Detail & Related papers (2020-09-12T08:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.