Solar Photovoltaic Assessment with Large Language Model
- URL: http://arxiv.org/abs/2507.19144v1
- Date: Fri, 25 Jul 2025 10:26:29 GMT
- Title: Solar Photovoltaic Assessment with Large Language Model
- Authors: Muhao Guo, Yang Weng,
- Abstract summary: We investigate how large language models (LLMs) can be leveraged to overcome solar panel detection challenges.<n>LLMs face several challenges in solar panel detection, including difficulties with multi-step logical processes.<n>We propose the PV Assessment with LLMs framework, which incorporates task decomposition for more efficient output standardization.
- Score: 6.72184534513047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection and localization of solar photovoltaic (PV) panels in satellite imagery is essential for optimizing microgrids and active distribution networks (ADNs), which are critical components of renewable energy systems. Existing methods lack transparency regarding their underlying algorithms or training datasets, rely on large, high-quality PV training data, and struggle to generalize to new geographic regions or varied environmental conditions without extensive re-training. These limitations lead to inconsistent detection outcomes, hindering large-scale deployment and data-driven grid optimization. In this paper, we investigate how large language models (LLMs) can be leveraged to overcome these challenges. Despite their promise, LLMs face several challenges in solar panel detection, including difficulties with multi-step logical processes, inconsistent output formatting, frequent misclassification of visually similar objects (e.g., shadows, parking lots), and low accuracy in complex tasks such as spatial localization and quantification. To overcome these issues, we propose the PV Assessment with LLMs (PVAL) framework, which incorporates task decomposition for more efficient workflows, output standardization for consistent and scalable formatting, few-shot prompting to enhance classification accuracy, and fine-tuning using curated PV datasets with detailed annotations. PVAL ensures transparency, scalability, and adaptability across heterogeneous datasets while minimizing computational overhead. By combining open-source accessibility with robust methodologies, PVAL establishes an automated and reproducible pipeline for solar panel detection, paving the way for large-scale renewable energy integration and optimized grid management.
Related papers
- Adapting Vision-Language Models Without Labels: A Comprehensive Survey [74.17944178027015]
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities across a wide range of tasks.<n>Recent research has increasingly focused on unsupervised adaptation methods that do not rely on labeled data.<n>We propose a taxonomy based on the availability and nature of unlabeled visual data, categorizing existing approaches into four key paradigms.
arXiv Detail & Related papers (2025-08-07T16:27:37Z) - AFLoRA: Adaptive Federated Fine-Tuning of Large Language Models with Resource-Aware Low-Rank Adaption [3.805501490912696]
Federated fine-tuning has emerged as a promising approach to adapt foundation models to downstream tasks using decentralized data.<n>We propose AFLoRA, an adaptive and lightweight federated fine-tuning framework for Large Language Models.
arXiv Detail & Related papers (2025-05-30T16:35:32Z) - ReGUIDE: Data Efficient GUI Grounding via Spatial Reasoning and Search [53.40810298627443]
ReGUIDE is a framework for web grounding that enables MLLMs to learn data efficiently through self-generated reasoning and spatial-aware criticism.<n>Our experiments demonstrate that ReGUIDE significantly advances web grounding performance across multiple benchmarks.
arXiv Detail & Related papers (2025-05-21T08:36:18Z) - Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
Current deep learning architectures for remote sensing are fundamentally rigid.<n>We introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling.<n> STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands.<n>It unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings.
arXiv Detail & Related papers (2025-05-18T07:39:17Z) - Clustering Rooftop PV Systems via Probabilistic Embeddings [0.0]
Large, spatially distributed time-series data is both high-dimensional and affected by missing values.<n>Probability entity embedding-based clustering framework is proposed to address these problems.<n> Applied to a multi-year residential PV dataset, it produces uncertainty-aware cluster profiles that outperform a physics-based baseline in representativeness and robustness.
arXiv Detail & Related papers (2025-05-15T20:44:45Z) - Privacy-Preserving Personalized Federated Learning for Distributed Photovoltaic Disaggregation under Statistical Heterogeneity [13.146806294562474]
A privacy-preserving distributed PV disaggregation framework is proposed using Personalized Federated Learning (PFL)<n>The proposed method employs a two-level framework that combines local and global modeling.<n>Experiments on real-world data demonstrate the effectiveness of this proposed framework, showing improved accuracy and robustness compared to benchmark methods.
arXiv Detail & Related papers (2025-04-25T05:09:27Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models [64.28420991770382]
Data-Juicer 2.0 is a data processing system backed by data processing operators spanning text, image, video, and audio modalities.<n>It supports more critical tasks including data analysis, annotation, and foundation model post-training.<n>It has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI.
arXiv Detail & Related papers (2024-12-23T08:29:57Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Solar Panel Segmentation :Self-Supervised Learning Solutions for Imperfect Datasets [0.0]
This paper addresses the challenges in panel segmentation, particularly the scarcity of annotated data and the labour-intensive nature of manual annotation for supervised learning.
We explore and apply Self-Supervised Learning (SSL) to solve these challenges.
arXiv Detail & Related papers (2024-02-20T09:13:11Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - EfficientLPS: Efficient LiDAR Panoptic Segmentation [30.249379810530165]
We present the novel Efficient LiDAR Panoptic architecture that addresses multiple challenges in segmenting LiDAR point clouds.
EfficientLPS comprises of a novel shared backbone that encodes with strengthened geometric transformation modeling capacity.
We benchmark our proposed model on two large-scale LiDAR datasets.
arXiv Detail & Related papers (2021-02-16T08:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.