DEFNet: Multitasks-based Deep Evidential Fusion Network for Blind Image Quality Assessment
- URL: http://arxiv.org/abs/2507.19418v1
- Date: Fri, 25 Jul 2025 16:36:45 GMT
- Title: DEFNet: Multitasks-based Deep Evidential Fusion Network for Blind Image Quality Assessment
- Authors: Yiwei Lou, Yuanpeng He, Rongchao Zhang, Yongzhi Cao, Hanpin Wang, Yu Huang,
- Abstract summary: Blind image quality assessment (BIQA) methods often incorporate auxiliary tasks to improve performance.<n>We propose a multitasks-based Deep Evidential Fusion Network (DEFNet) for BIQA, which performs multitask optimization with the assistance of scene and distortion type classification tasks.
- Score: 5.517243185525322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind image quality assessment (BIQA) methods often incorporate auxiliary tasks to improve performance. However, existing approaches face limitations due to insufficient integration and a lack of flexible uncertainty estimation, leading to suboptimal performance. To address these challenges, we propose a multitasks-based Deep Evidential Fusion Network (DEFNet) for BIQA, which performs multitask optimization with the assistance of scene and distortion type classification tasks. To achieve a more robust and reliable representation, we design a novel trustworthy information fusion strategy. It first combines diverse features and patterns across sub-regions to enhance information richness, and then performs local-global information fusion by balancing fine-grained details with coarse-grained context. Moreover, DEFNet exploits advanced uncertainty estimation technique inspired by evidential learning with the help of normal-inverse gamma distribution mixture. Extensive experiments on both synthetic and authentic distortion datasets demonstrate the effectiveness and robustness of the proposed framework. Additional evaluation and analysis are carried out to highlight its strong generalization capability and adaptability to previously unseen scenarios.
Related papers
- Learning to Fuse: Modality-Aware Adaptive Scheduling for Robust Multimodal Foundation Models [0.0]
Modality-Aware Adaptive Fusion Scheduling (MA-AFS) learns to dynamically modulate the contribution of each modality on a per-instance basis.<n>Our work highlights the importance of adaptive fusion and opens a promising direction toward reliable and uncertainty-aware multimodal learning.
arXiv Detail & Related papers (2025-06-15T05:57:45Z) - Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization [49.567092222782435]
We introduce the novel concept of XAI consistency, defined as the agreement among different feature attribution methods.<n>We create a multi-objective optimization framework that balances predictive performance with explanation.<n>Our research provides a foundation for future investigations into whether models from the trade-off zone-balancing performance loss and XAI consistency-exhibit greater robustness.
arXiv Detail & Related papers (2025-05-12T13:19:14Z) - Uncertainty-Aware Decomposed Hybrid Networks [5.67478985222587]
We propose a hybrid approach that combines the adaptability of neural networks with the interpretability, transparency, and robustness of domain-specific operators.<n>Our method decomposes the recognition into multiple task-specific operators that focus on different characteristics, supported by a novel confidence measurement.
arXiv Detail & Related papers (2025-03-24T19:30:17Z) - Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond [52.486290612938895]
We propose a novel method that leverages the semantic knowledge from the Segment Anything Model (SAM) to Grow the quality of fusion results and Enable downstream task adaptability.<n> Specifically, we design a Semantic Persistent Attention (SPA) Module that efficiently maintains source information via the persistent repository while extracting high-level semantic priors from SAM.<n>Our method achieves a balance between high-quality visual results and downstream task adaptability while maintaining practical deployment efficiency.
arXiv Detail & Related papers (2025-03-03T06:16:31Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
In this paper, we revisit techniques for uncertainty estimation within deep neural networks and consolidate a suite of techniques to enhance their reliability.
We rigorously evaluate SURE against the benchmark of failure prediction, a critical testbed for uncertainty estimation efficacy.
When applied to real-world challenges, such as data corruption, label noise, and long-tailed class distribution, SURE exhibits remarkable robustness, delivering results that are superior or on par with current state-of-the-art specialized methods.
arXiv Detail & Related papers (2024-03-01T13:58:19Z) - A Lightweight Parallel Framework for Blind Image Quality Assessment [7.9562077122537875]
We propose a lightweight parallel framework (LPF) for blind image quality assessment (BIQA)
First, we extract the visual features using a pre-trained feature extraction network. Furthermore, we construct a simple yet effective feature embedding network (FEN) to transform the visual features.
We present two novel self-supervised subtasks, including a sample-level category prediction task and a batch-level quality comparison task.
arXiv Detail & Related papers (2024-02-19T10:56:58Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning [5.648318448953635]
ARBEx is a novel attentive feature extraction framework driven by Vision Transformer.
We employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions.
Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.
arXiv Detail & Related papers (2023-05-02T15:10:01Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
We propose a purposeful and interpretable detail-fidelity attention network to progressively process smoothes and details in divide-and-conquer manner.
Particularly, we propose a Hessian filtering for interpretable feature representation which is high-profile for detail inference.
Experiments demonstrate that the proposed methods achieve superior performances over the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T08:31:23Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.